已知a,b,c都是正数,求证√(a2+b2)+√(b2+c2)+√(a2+c2)>=(√2)*(a+b+c)
2个回答
展开全部
【注:一个结论】
设a, b∈R,则√[2(a²+b²)≥a+b.
等号仅当a=b≥0时取得。
证明:
由基本不等式可得:
a²+b²≥2ab
∴2(a²+b²)≥a²+2ab+b²
即2(a²+b²)≥(a+b)²
两边开方,可得
√[2(a²+b²)]≥|a+b|≥a+b.
∴√[2(a²+b²)]≥a+b.
【证明】
由上面的结论可知
√[2(a²+b²)]≥a+b
√[2(b²+c²)]≥b+c
√[2(c²+a²)]≥c+a
把上面三个式子相加,整理可得
√(a²+b²)+√(b²+c²)+√(c²+a²)≥(√2)(a+b+c)
设a, b∈R,则√[2(a²+b²)≥a+b.
等号仅当a=b≥0时取得。
证明:
由基本不等式可得:
a²+b²≥2ab
∴2(a²+b²)≥a²+2ab+b²
即2(a²+b²)≥(a+b)²
两边开方,可得
√[2(a²+b²)]≥|a+b|≥a+b.
∴√[2(a²+b²)]≥a+b.
【证明】
由上面的结论可知
√[2(a²+b²)]≥a+b
√[2(b²+c²)]≥b+c
√[2(c²+a²)]≥c+a
把上面三个式子相加,整理可得
√(a²+b²)+√(b²+c²)+√(c²+a²)≥(√2)(a+b+c)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询