已知sinα是方程5x^2-7x-6=0的根
已知sinα是方程5x^2-7x-6=0的根,求[cos(2π-α)tan^2(2π-α)]/[sin(π-α)sin(2π-α)tan(π-α)的值...
已知sinα是方程5x^2-7x-6=0的根,求[cos(2π-α)tan^2(2π-α)]/[sin(π-α)sin(2π-α)tan(π-α)的值
展开
1个回答
展开全部
解:方程5x^2-7x-6=0可因式分解为(x-2)(5x+3)=0
所以两个根分别为X1=2 X2=-3/5 因为 -1=<sinα<=1 所以sinα=-3/5
[cos(2π-α)tan^2(2π-α)]/[sin(π-α)sin(2π-α)tan(π-α)]=[cos(α)tan^2(α)]/[sin(α)sin(α)tan(α)
=1/sinα
=-5/3
所以两个根分别为X1=2 X2=-3/5 因为 -1=<sinα<=1 所以sinα=-3/5
[cos(2π-α)tan^2(2π-α)]/[sin(π-α)sin(2π-α)tan(π-α)]=[cos(α)tan^2(α)]/[sin(α)sin(α)tan(α)
=1/sinα
=-5/3
追问
不好意思,我把题目打错了,是这样的:[cos(2π-α)cos(π+α)tan^2(2π-α)]/[sin(π-α)sin(2π-α)tan(π-α)]
追答
[cos(2π-α)cos(π+α)tan^2(2π-α)]/[sin(π-α)sin(2π-α)tan(π-α)]=[-cos(α)cos(α)tan^2(α)]/[sin(α)sin(α)tan(α)]=-1/tan(α)=-4/3或4/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询