已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√6/3,短轴的一个端点到右焦点的距离为√3。
.设直线L与椭圆C交于A,B两点,坐标原点O到直线的距离为√3/2,求三角形AOB的面积的最大值...
.设直线L与椭圆C交于A,B两点,坐标原点O到直线的距离为√3/2,求三角形AOB的面积的最大值
展开
1个回答
展开全部
AB|=√(1+k^2) √[(x1+x2)^2-4x1x2]
=√(1+k^2) √[36k^2b^2/(1+3k^2)^2-4·3(b^2-1)/( 1+3k^2)]
=√(1+k^2) √[(36k^2+12-12b^2)/(1+3k^2)^2]
将b^2=3(k^2+1)/4代入
=√(1+k^2) √[(36k^2+12-9(k^2+1))/(1+3k^2)^2]
=√(1+k^2) √[3(9k^2+1) /(1+3k^2)^2]
=√(3+3k^2) √[(9k^2+1) /(1+3k^2)^2]
=√[(3+3k^2) (9k^2+1)] /(1+3k^2)
利用基本不等式
≤[(3+3k^2)+ (9k^2+1)] /[2 (1+3k^2)]=2
3+3k^2=9k^2+1时取到等号。
此时k=±3.
所以面积最大值是1/2·2·√3/2=√3/2.
=√(1+k^2) √[36k^2b^2/(1+3k^2)^2-4·3(b^2-1)/( 1+3k^2)]
=√(1+k^2) √[(36k^2+12-12b^2)/(1+3k^2)^2]
将b^2=3(k^2+1)/4代入
=√(1+k^2) √[(36k^2+12-9(k^2+1))/(1+3k^2)^2]
=√(1+k^2) √[3(9k^2+1) /(1+3k^2)^2]
=√(3+3k^2) √[(9k^2+1) /(1+3k^2)^2]
=√[(3+3k^2) (9k^2+1)] /(1+3k^2)
利用基本不等式
≤[(3+3k^2)+ (9k^2+1)] /[2 (1+3k^2)]=2
3+3k^2=9k^2+1时取到等号。
此时k=±3.
所以面积最大值是1/2·2·√3/2=√3/2.
追问
AB|=√(1+k^2) √[(x1+x2)^2-4x1x2]
我想请问你这个式子怎么得到的??
参考资料: http://zhidao.baidu.com/question/201466232.html?an=0&si=4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询