1个回答
展开全部
x^3+mx-4在整数范围内可以因式分解,说明方程x^3+mx-4=0有整数根,而它的整数根必是4的因数,因此它的根只可能是-4、-2、-1、1、2、4。
若根为-4,代入方程可解得m=-17,于是x^3-17x-4=(x+4)(x^2-4x-1);
若根为-2,代入方程可解得m=-6,于是x^3-6x-4=(x+2)(x^2-2x-2);
若根为-1,代入方程可解得m=-5,于是x^3-5x-4=(x+1)(x^2-x-4);
若根为1,代入方程可解得m=3,于是x^3+3x-4=(x-1)(x^2+x+4);
若根为2,代入方程可解得m=-2,于是x^3-2x-4=(x-2)(x^2+2x+2);
若根为4,代入方程可解得m=-15,于是x^3-15x-4=(x-4)(x^2+4x+1)。
若根为-4,代入方程可解得m=-17,于是x^3-17x-4=(x+4)(x^2-4x-1);
若根为-2,代入方程可解得m=-6,于是x^3-6x-4=(x+2)(x^2-2x-2);
若根为-1,代入方程可解得m=-5,于是x^3-5x-4=(x+1)(x^2-x-4);
若根为1,代入方程可解得m=3,于是x^3+3x-4=(x-1)(x^2+x+4);
若根为2,代入方程可解得m=-2,于是x^3-2x-4=(x-2)(x^2+2x+2);
若根为4,代入方程可解得m=-15,于是x^3-15x-4=(x-4)(x^2+4x+1)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询