在三角形ABC中 角A B C所对的边分别为a b c,若a=根号2 b=2 sinB+cosB=根号2...
在三角形ABC中角ABC所对的边分别为abc,若a=根号2b=2sinB+cosB=根号2则角A的大小为...
在三角形ABC中 角A B C所对的边分别为a b c,若a=根号2 b=2 sinB+cosB=根号2 则角A的大小为
展开
3个回答
展开全部
sinB+cosB=√2,
整体平方可得(sinB+cosB)^2=2
可推2sinBcosB=sin2B=1
得∠B=45度,则sinB=√2/2
在三角形ABC中,已知角A,B,C所对边分别为a,b,c,且a=√2,b=2和∠B=45度,求∠A
用正弦定理
a/sinA=b/sinB
sinA=asinB/ b =(√2×√2/2)/2=1/2
A=30°
整体平方可得(sinB+cosB)^2=2
可推2sinBcosB=sin2B=1
得∠B=45度,则sinB=√2/2
在三角形ABC中,已知角A,B,C所对边分别为a,b,c,且a=√2,b=2和∠B=45度,求∠A
用正弦定理
a/sinA=b/sinB
sinA=asinB/ b =(√2×√2/2)/2=1/2
A=30°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵sinB+cosB=√2[(√2/2)sinB+(√2/2)cosB]=√2sin(B+45°)=√2,
∴sin(B+45°)=1,
∴sin(B+45°)=sin90°,
∴∠B+45°=90°,
∠B=45°,
根据正弦定理,
a/sinA=b/sinB,
∴√2/sinA=2/sin45°,
sinA=1/2,
∵a=√2<2,a不是最大边,
∴∠A不是钝角,
∴∠A=30°。
∴sin(B+45°)=1,
∴sin(B+45°)=sin90°,
∴∠B+45°=90°,
∠B=45°,
根据正弦定理,
a/sinA=b/sinB,
∴√2/sinA=2/sin45°,
sinA=1/2,
∵a=√2<2,a不是最大边,
∴∠A不是钝角,
∴∠A=30°。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询