当f(x)的3阶导数在点X=0处存在,就可以对f(x)在0处的极限使用洛必达法则,这时为什么?
李永乐的全书不是一直强调只有当f(x)的1阶导数在点X=0的邻域存在时才可以使用洛必达法则吗?当李的全书上在当f(x)的3阶导数在点X=0处存在,就说可以对f(x)在0处...
李永乐的全书不是一直强调只有当f(x)的1阶导数在点X=0的邻域存在时才可以使用洛必达法则吗?当李的全书上在当f(x)的3阶导数在点X=0处存在,就说可以对f(x)在0处的极限使用洛必达法则,对f'(x)在0处的极限又不能使用了。难道当f(x)的3阶导数在点X=0处存在就说明f'(x)在0的邻域存在?
展开
3个回答
2011-10-23
展开全部
楼上其实讲得挺明白的,只是你自己不理解。
细致一点,f'''(0)=lim{x->0} [f''(x)-f''(0)]/x
根据定义,f'''(0)存在至少需要f''(x)在x=0的一个邻域内存在,
于是f''(0)也存在,同理继续得到f'(x)在x=0的一个邻域内存在。
看上去你的基本功不过关,最好先看教材,不要看什么复习全书,那东西远不如教材有用。
细致一点,f'''(0)=lim{x->0} [f''(x)-f''(0)]/x
根据定义,f'''(0)存在至少需要f''(x)在x=0的一个邻域内存在,
于是f''(0)也存在,同理继续得到f'(x)在x=0的一个邻域内存在。
看上去你的基本功不过关,最好先看教材,不要看什么复习全书,那东西远不如教材有用。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询