1个回答
展开全部
lim(x->0) x^2.∫(0->x) f(t) dt / ∫(0->x^2) f(t) dt (0/0) :分子,分母分别求导
=lim(x->0) [x^2.f(x) +2x.∫(0->x) f(t) dt] / [2x.f(x^2) ]
=lim(x->0) [xf(x) +2∫(0->x) f(t) dt] / [2f(x^2) ] (0/0) :分子,分母分别求导
=lim(x->0) [xf'(x)+ f(x) +2f(x)] / [4x.f'(x^2) ]
=lim(x->0) [xf'(x)+ 3f(x) ] / [4x.f'(x^2) ]
=(1/4) lim(x->0) f'(x)/ f'(x^2) + [3/(4f'(0) )]. lim(x->0) [ f(x)/x]
=1/4 +[3/(4f'(0)) ].f'(0)
=1/4 + 3/4
=1
=lim(x->0) [x^2.f(x) +2x.∫(0->x) f(t) dt] / [2x.f(x^2) ]
=lim(x->0) [xf(x) +2∫(0->x) f(t) dt] / [2f(x^2) ] (0/0) :分子,分母分别求导
=lim(x->0) [xf'(x)+ f(x) +2f(x)] / [4x.f'(x^2) ]
=lim(x->0) [xf'(x)+ 3f(x) ] / [4x.f'(x^2) ]
=(1/4) lim(x->0) f'(x)/ f'(x^2) + [3/(4f'(0) )]. lim(x->0) [ f(x)/x]
=1/4 +[3/(4f'(0)) ].f'(0)
=1/4 + 3/4
=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |