一道初中关于一次函数的题,怎么也没想明白!求助
如下:一报亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以以每份0.2元的价格退回报社,在一个月内(以30天计算)有20天每天可以卖出100份...
如下:一报亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以以每份0.2元的价格退回报社,在一个月内(以30天计算)有20天每天可以卖出100份,其余10天每天只能卖出60份,但每天报亭从报社订购的份数必须相同,若以报亭每天从报社订购报纸的份数为自变量x,每月所获利润为y(元)
(1)写出y与x之间的函数关系式,并指出自变量x的取值范围;
(2)报亭应该每天从报社订购多少份报纸,才能是每月获得的利润最大?最大利润是多少? 展开
(1)写出y与x之间的函数关系式,并指出自变量x的取值范围;
(2)报亭应该每天从报社订购多少份报纸,才能是每月获得的利润最大?最大利润是多少? 展开
1个回答
展开全部
[分析] (1)先确定x的取值范围,60≤x≤100,且x是正整数,然后列出函数表达式.
(2)利用一次函数的性质求出最大利润.
解:(1)若报亭每天从报社订购晚报x份,
则x应满足60≤x≤100,且x是正整数.
则每月共销售(20x+10×60)份,退回报社10(x-60)份.
又因为卖出的报纸每份获利0.3元,退回的报纸每份亏损0.5元,所以每月获得的利润为,
y=0.3(2Ox十10×6O)一0.5×1O(x-6O)=x十48O.
自变量x的取值范围是60≤x≤100,且x是正整数.
(2)∵当60≤x≤100时,y随x的增大而增大,
∴当x=100时,y有最大值.
y最大值=100+480=580(元).
∴报亭应该从报社订购100份报纸,才能使每月获得的利润最大,最大利润是580元.
(2)利用一次函数的性质求出最大利润.
解:(1)若报亭每天从报社订购晚报x份,
则x应满足60≤x≤100,且x是正整数.
则每月共销售(20x+10×60)份,退回报社10(x-60)份.
又因为卖出的报纸每份获利0.3元,退回的报纸每份亏损0.5元,所以每月获得的利润为,
y=0.3(2Ox十10×6O)一0.5×1O(x-6O)=x十48O.
自变量x的取值范围是60≤x≤100,且x是正整数.
(2)∵当60≤x≤100时,y随x的增大而增大,
∴当x=100时,y有最大值.
y最大值=100+480=580(元).
∴报亭应该从报社订购100份报纸,才能使每月获得的利润最大,最大利润是580元.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询