
7个回答
展开全部
平行四边形的特性有:
(1)平行四边形对边平行且相等。
(2)平行四边形两条对角线互相平分。(菱形和正方形)
(3)平行四边形的对角相等,两邻角互补
(4)连接任意四边形各边的中点所得图形是平行四边形。(推论)
(5)平行四边形的面积等于底和高的积。(可视为矩形)
(6)平行四边形是旋转对称图形,旋转中心是两条对角线的交点。
(7)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
(8)平行四边形是中心对称图形,对称中心是两对角线的交点。
(9)一般的平行四边形不是轴对称图形,菱形是轴对称图形。
(10)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和(可用余弦定理证明)。
(11)平行四边形对角线把平行四边形面积分成四等分。
(1)平行四边形对边平行且相等。
(2)平行四边形两条对角线互相平分。(菱形和正方形)
(3)平行四边形的对角相等,两邻角互补
(4)连接任意四边形各边的中点所得图形是平行四边形。(推论)
(5)平行四边形的面积等于底和高的积。(可视为矩形)
(6)平行四边形是旋转对称图形,旋转中心是两条对角线的交点。
(7)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
(8)平行四边形是中心对称图形,对称中心是两对角线的交点。
(9)一般的平行四边形不是轴对称图形,菱形是轴对称图形。
(10)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和(可用余弦定理证明)。
(11)平行四边形对角线把平行四边形面积分成四等分。
展开全部
1)平行四边形对边平行且相等。
(2)平行四边形两条对角线互相平分。
(3)平行四边形的对角相等,两邻角互补
(4)连接任意四边形各边的中点所得图形是平行四边形。
(5)平行四边形的面积等于底和高的积
(6)平行四边形是旋转对称图形,旋转中心是两条对角线的交点。
(7)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
(8)平行四边形是中心对称图形,对称中心是两对角线的交点。
(9)一般的平行四边形不是轴对称图形,菱形是轴对称图形。
(10)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和(可用余弦定理证明)。
(11)平行四边形对角线把平行四边形面积分成四等分。
(2)平行四边形两条对角线互相平分。
(3)平行四边形的对角相等,两邻角互补
(4)连接任意四边形各边的中点所得图形是平行四边形。
(5)平行四边形的面积等于底和高的积
(6)平行四边形是旋转对称图形,旋转中心是两条对角线的交点。
(7)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
(8)平行四边形是中心对称图形,对称中心是两对角线的交点。
(9)一般的平行四边形不是轴对称图形,菱形是轴对称图形。
(10)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和(可用余弦定理证明)。
(11)平行四边形对角线把平行四边形面积分成四等分。
展开全部
对应两条边平行且相等,对角相等
展开全部
有容易变形的特性
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询