2011-10-24
展开全部
好简单呢!极限的证明无非用到更多的是 迫敛性,或者找等价的一个已知极限值的数列去逼近。
一般最多的就是迫敛性(也称为 夹逼准则 )
自己尝试着去解下,就知道了。这里没法发图片,我也懒得写了。你自己看着办吧
一般最多的就是迫敛性(也称为 夹逼准则 )
自己尝试着去解下,就知道了。这里没法发图片,我也懒得写了。你自己看着办吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:(1)对于任意的ε>0,解不等式
│(2n²+1)/(3n²+1)-2/3│=1/(3(3n²+1))<1/(9n²)<1/n²<ε
得n>1/√ε,取N≥[1/√ε]。
于是,对于任意的ε>0,总存在自然数N≥[1/√ε]。当n>N时,有│(2n²+1)/(3n²+1)-2/3│<ε
即lim(n->∞)[(2n²+1)/(3n²+1)]=2/3;
(2)对于任意的ε>0,解不等式
│(9n³-1)/(5n^4+5n-1)│<9n³/(5n^4)=9/(5n)<2/n<ε
得n>2/ε,取N≥[2/ε]。
于是,对于任意的ε>0,总存在自然数N≥[2/ε]。当n>N时,有│(9n³-1)/(5n^4+5n-1)│<ε
即lim(n->∞)[(9n³-1)/(5n^4+5n-1)]=0;
(3)对于任意的ε>0,解不等式
│(6x²-7x+2)/(2x-1)+1/2│=3│x-1/2│<ε
得│x-1/2│<ε/3,取δ≤ε/3。
于是,对于任意的ε>0,总存在δ≤ε/3。当│x-1/2│<δ时,有│(6x²-7x+2)/(2x-1)+1/2│<ε
即lim(x->1/2)[(6x²-7x+2)/(2x-1)]=-1/2;
(4)对于任意的ε>0,解不等式
│(8x³+27)/(4x²-6x+9)+1│=│(2x+3)+1│=2│x+2│<ε
得│x+2│<ε/2,取δ≤ε/2。
于是,对于任意的ε>0,总存在δ≤ε/2。当│x+2│<δ时,有│(8x³+27)/(4x²-6x+9)+1│<ε
即lim(x->-2)[(8x³+27)/(4x²-6x+9)]=-1。
│(2n²+1)/(3n²+1)-2/3│=1/(3(3n²+1))<1/(9n²)<1/n²<ε
得n>1/√ε,取N≥[1/√ε]。
于是,对于任意的ε>0,总存在自然数N≥[1/√ε]。当n>N时,有│(2n²+1)/(3n²+1)-2/3│<ε
即lim(n->∞)[(2n²+1)/(3n²+1)]=2/3;
(2)对于任意的ε>0,解不等式
│(9n³-1)/(5n^4+5n-1)│<9n³/(5n^4)=9/(5n)<2/n<ε
得n>2/ε,取N≥[2/ε]。
于是,对于任意的ε>0,总存在自然数N≥[2/ε]。当n>N时,有│(9n³-1)/(5n^4+5n-1)│<ε
即lim(n->∞)[(9n³-1)/(5n^4+5n-1)]=0;
(3)对于任意的ε>0,解不等式
│(6x²-7x+2)/(2x-1)+1/2│=3│x-1/2│<ε
得│x-1/2│<ε/3,取δ≤ε/3。
于是,对于任意的ε>0,总存在δ≤ε/3。当│x-1/2│<δ时,有│(6x²-7x+2)/(2x-1)+1/2│<ε
即lim(x->1/2)[(6x²-7x+2)/(2x-1)]=-1/2;
(4)对于任意的ε>0,解不等式
│(8x³+27)/(4x²-6x+9)+1│=│(2x+3)+1│=2│x+2│<ε
得│x+2│<ε/2,取δ≤ε/2。
于是,对于任意的ε>0,总存在δ≤ε/2。当│x+2│<δ时,有│(8x³+27)/(4x²-6x+9)+1│<ε
即lim(x->-2)[(8x³+27)/(4x²-6x+9)]=-1。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询