
已知函数f(x)=(2^x)+(2^-x)判断函数的奇偶性求函数的单调增区间
1个回答
展开全部
奇偶性判断:
x定义域为R,定义域关于原点对称
f(x)=(2^x)+(2^-x)
f(-x)=(2^-x)+(2^x)=f(x)
所以是偶函数
单调性判断:
设m>n
f(m)-f(n)=(2^m)-(2^n)+(2^-m)-(2^-n)
当m>n≥0时
f(m)-f(n)>0
即f(x)在[0,正无穷)是增函数
当0≥m>n时
所以f(m)-f(n)<0
即f(x)在(负无穷,0]是减函数(通过偶函数的性质也可以判断)
因此单调增区间是[0,正无穷)
x定义域为R,定义域关于原点对称
f(x)=(2^x)+(2^-x)
f(-x)=(2^-x)+(2^x)=f(x)
所以是偶函数
单调性判断:
设m>n
f(m)-f(n)=(2^m)-(2^n)+(2^-m)-(2^-n)
当m>n≥0时
f(m)-f(n)>0
即f(x)在[0,正无穷)是增函数
当0≥m>n时
所以f(m)-f(n)<0
即f(x)在(负无穷,0]是减函数(通过偶函数的性质也可以判断)
因此单调增区间是[0,正无穷)

2025-02-09 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询