已知f(n)=sinnπ/4,n∈Z⑴求证:f(1)+f(2)+…+f(8)=f(9)+f(10)+…+f(16) ⑵求f(1)+f(2)+…+f(2003)的值

过程... 过程 展开
ferrari_joe
2011-10-25 · TA获得超过107个赞
知道答主
回答量:86
采纳率:0%
帮助的人:103万
展开全部
sin(2kπ+α)=sin α k是整数 sin α的函数周期为2π
已知f(n)=sinnπ/4 所以 函数周期为 2π / π/4 = 8
所以 f(1) = f(9)= sinπ/4 f(2) = f(10) 一直到 f(8)=f(16)
第二问 通过第一问你发现了f(n)=sinnπ/4 随着n的增长,其实是个周期为8的函数
f(1)+f(2)+…+f(8)= 0

(1)+f(2)+…+f(2003)= 0+f(2001)+f(2002)+f(2003)= f(1)+f(2)+f(3)= 1+根号2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式