1个回答
展开全部
| (3n+1)/(2n+1) - 3/2 |<ε
| [2(3n+1)-3(2n+1) ]/[2(2n+1)] |<ε
| -1/[2(2n+1)] |<ε
1/[2(2n+1)]<ε
2n+1 > 1/(2ε)
n >1/(4ε)
选 N=[1/(4ε)] +1
∀ε>0, ∃N=[1/(4ε)] +1 , st
| (3n+1)/(2n+1) - 3/2 |<ε , ∀n>N
=>
lim(n->∞) (3n+1)/(2n+1) =3/2
| [2(3n+1)-3(2n+1) ]/[2(2n+1)] |<ε
| -1/[2(2n+1)] |<ε
1/[2(2n+1)]<ε
2n+1 > 1/(2ε)
n >1/(4ε)
选 N=[1/(4ε)] +1
∀ε>0, ∃N=[1/(4ε)] +1 , st
| (3n+1)/(2n+1) - 3/2 |<ε , ∀n>N
=>
lim(n->∞) (3n+1)/(2n+1) =3/2
追问
谢谢!
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |