已知集合A={1,2},f1,f2为定义域和值域都是A的两个不同的函数,那么以下正确的是

A.f1(f2(1))=1B.f1(f2(2))=1C.f2(f1(1))=1D.f2(f1(2))=2这是单选题...... A.f1(f2(1))=1
B.f1(f2(2))=1
C.f2(f1(1))=1
D.f2(f1(2))=2
这是单选题...
展开
百度网友a35eb8c
2011-10-27 · TA获得超过944个赞
知道小有建树答主
回答量:377
采纳率:100%
帮助的人:278万
展开全部
答案选B,
考虑到函数的定义,这里从A到B的函数只有两种,一个是1->1,2->2,或者1->2,2->1
因为题目要求f1和f2不同,所以它们各自对应一种情况,比如:让f1(1)=1,f1(2)=2,
那么f2(1)=2,f2(2)=1将这些代入A、B、C、D四个选项,
A、应该是f1(f2(1))=f1(2)=2
B、对的
C、应该是f2(f1(1))=f2(1)=2
D、应该是f2(f1(2))=f2(2)=1
胜啥7027
2011-10-25 · TA获得超过152个赞
知道答主
回答量:167
采纳率:0%
帮助的人:120万
展开全部
一、集合与简易逻辑:
一、理解集合中的有关概念
(1)集合中元素的特征: 确定性 , 互异性 , 无序性 。
(2)集合与元素的关系用符号=表示。
(3)常用数集的符号表示:自然数集 ;正整数集 ;整数集 ;有理数集 、实数集 。
(4)集合的表示法: 列举法 , 描述法 , 韦恩图 。
(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。

二、函数
一、映射与函数:
(1)映射的概念: (2)一一映射:(3)函数的概念:

二、函数的三要素:
相同函数的判断方法:①对应法则 ;②定义域 (两点必须同时具备)
(1)函数解析式的求法:
①定义法(拼凑):②换元法:③待定系数法:④赋值法:
(2)函数定义域的求法:
①含参问题的定义域要分类讨论;
②对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。
(3)函数值域的求法:
①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式;
②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ;
④换元法:通过变量代换转化为能求值域的函数,化归思想;
⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;
⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域;
⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。

三、函数的性质:
函数的单调性、奇偶性、周期性
单调性:定义:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较)
导数法(适用于多项式函数)
复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数;
f(x) f(-x)=0 f(x) =-f(-x) f(x)为奇函数。
判别方法:定义法, 图像法 ,复合函数法
应用:把函数值进行转化求解。
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x T)=f(x),则T为函数f(x)的周期。
其他:若函数f(x)对定义域内的任意x满足:f(x a)=f(x-a),则2a为函数f(x)的周期.
应用:求函数值和某个区间上的函数解析式。

四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。
常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)
平移变换 y=f(x)→y=f(x a),y=f(x) b
注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过 平移得到函数y=f(2x+4)的图象。
(ⅱ)会结合向量的平移,理解按照向量 (m,n)平移的意义。
对称变换 y=f(x)→y=f(-x),关于y轴对称
y=f(x)→y=-f(x) ,关于x轴对称
y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称
y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)
伸缩变换:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx φ)具体参照三角函数的图象变换。
一个重要结论:若f(a-x)=f(a x),则函数y=f(x)的图像关于直线x=a对称;

五、反函数:
(1)定义:
(2)函数存在反函数的条件:
(3)互为反函数的定义域与值域的关系:
(4)求反函数的步骤:①将 看成关于 的方程,解出 ,若有两解,要注意解的选择;②将 互换,得 ;③写出反函数的定义域(即 的值域)。
(5)互为反函数的图象间的关系:
(6)原函数与反函数具有相同的单调性;
(7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。

七、常用的初等函数:
(1)一元一次函数:
(2)一元二次函数:
一般式
两点式
顶点式
二次函数求最值问题:首先要采用配方法,化为一般式,
有三个类型题型:
(1)顶点固定,区间也固定。如:
(2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外。
(3)顶点固定,区间变动,这时要讨论区间中的参数.
等价命题 在区间 上有两根 在区间 上有两根 在区间 或 上有一根
注意:若在闭区间 讨论方程 有实数解的情况,可先利用在开区间 上实根分布的情况,得出结果,在令 和 检查端点的情况。
(3)反比例函数:
(4)指数函数:
指数函数:y= (a
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
worldbl
2011-10-25 · TA获得超过3.3万个赞
知道大有可为答主
回答量:6885
采纳率:100%
帮助的人:3446万
展开全部
用排除法。
取f1(x)=x,f2(x)=3-x ( 即f1(1)=1,f1(2)=2,f2(1)=2,f2(2)=1 )
则 f1(f2(1))=f1(2)=2≠1,排除A;
  f2(f1(1))=f2(1)=2≠1,排除C;
f2(f1(2))=f2(2)=1≠2,排除D;
从而选B。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
不再是莩莩
2011-10-25 · TA获得超过1670个赞
知道小有建树答主
回答量:1329
采纳率:0%
帮助的人:790万
展开全部
怎么觉得好像都正确
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Lemon54
2011-10-25 · TA获得超过378个赞
知道小有建树答主
回答量:269
采纳率:50%
帮助的人:92.3万
展开全部
b
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式