3个回答
展开全部
令x=a×sect试试
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
三角函数代换法!
设x=asecu,则dx=asecutanudu,x²-a²=a²(sec²u-1)=a²tan²u,
√(x²-a²)=atanu,secu=x/a, tanu=[√(x²-a²)]/a.
代入原式得:
∫[√(x²-a²)]dx
=a²∫tan²usecudu
=a²∫secu(sec²u-1)du
=a²[∫sec³udu-∫secudu]
=a²[(1/2)secutanu+(1/2)ln(secu+tanu)-ln(secu+tanu)]+lnc₁
=a²[(1/2)secutanu-(1/2)ln(secu+tanu)]+lnc₁
=(1/2)[(x√(x²-a²)]-(a²/2)ln[(x/a)+(1/a)√(x²-a²)]+lnc₁
=(1/2){x√(x²-a²)-a²[ln(x+√(x²-a²)-lna]}+lnc₁
=(1/2){x√(x²-a²)-a²ln[x+√(x²-a²)]}+a²ln(ac₁)
=(1/2){x√(x²-a²)-a²ln[x+√(x²-a²)]}+C
设x=asecu,则dx=asecutanudu,x²-a²=a²(sec²u-1)=a²tan²u,
√(x²-a²)=atanu,secu=x/a, tanu=[√(x²-a²)]/a.
代入原式得:
∫[√(x²-a²)]dx
=a²∫tan²usecudu
=a²∫secu(sec²u-1)du
=a²[∫sec³udu-∫secudu]
=a²[(1/2)secutanu+(1/2)ln(secu+tanu)-ln(secu+tanu)]+lnc₁
=a²[(1/2)secutanu-(1/2)ln(secu+tanu)]+lnc₁
=(1/2)[(x√(x²-a²)]-(a²/2)ln[(x/a)+(1/a)√(x²-a²)]+lnc₁
=(1/2){x√(x²-a²)-a²[ln(x+√(x²-a²)-lna]}+lnc₁
=(1/2){x√(x²-a²)-a²ln[x+√(x²-a²)]}+a²ln(ac₁)
=(1/2){x√(x²-a²)-a²ln[x+√(x²-a²)]}+C
追答
满意请采纳
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询