一阶导数等于0,二阶导数等于1,表示什么??
3个回答
展开全部
函数在某一点处一阶导数为0,二阶导数为1,此时
表示函数在这一点取极小值
简单解释:一阶导数为零,那么为稳定点,二阶导数为1>0,那么一阶导数在此点左边为负,右边为正,故原函数在此点左边递减,右边递增。即为极小值。
如果函数一阶导数恒为0,那么更高阶导数必然都为0。
类似的,一阶导数为0,二阶导数若小于0,那么就是极大值了。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。
当函数f的自变量在一点x0上产生一个增量h时,函数输出值的增量与自变量增量h的比值在h趋于0时的极限如果存在,即为f在x0处的导数。
扩展资料:
当函数定义域和取值都在实数域中的时候,导数可以表示函数的曲线上的切线斜率。如右图所示,设P0为曲线上的一个定点,P为曲线上的一个动点。当P沿曲线逐渐趋向于点P0时,并且割线PP0的极限位置P0T存在,则称P0T为曲线在P0处的切线。
一阶导数表示的是函数的变化率,最直观的表现就在于函数的单调性:
设f(x)在[a,b]上连续,在(a,b)内具有一阶导数,那么:
(1)若在(a,b)内f'(x)>0,则f(x)在[a,b]上的图形单调递增;
(2)若在(a,b)内f’(x)<0,则f(x)在[a,b]上的图形单调递减;
(3)若在(a,b)内f'(x)=0,则f(x)在[a,b]上的图形是平行(或重合)于x轴的直线,即在[a,b]上为常数。
判断函数极大值以及极小值。结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。
参考资料来源:搜狗百科——二阶导数
参考资料来源:搜狗百科——一阶导数
表示函数在这一点取极小值
简单解释:一阶导数为零,那么为稳定点,二阶导数为1>0,那么一阶导数在此点左边为负,右边为正,故原函数在此点左边递减,右边递增。即为极小值。
如果函数一阶导数恒为0,那么更高阶导数必然都为0。
类似的,一阶导数为0,二阶导数若小于0,那么就是极大值了。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。
当函数f的自变量在一点x0上产生一个增量h时,函数输出值的增量与自变量增量h的比值在h趋于0时的极限如果存在,即为f在x0处的导数。
扩展资料:
当函数定义域和取值都在实数域中的时候,导数可以表示函数的曲线上的切线斜率。如右图所示,设P0为曲线上的一个定点,P为曲线上的一个动点。当P沿曲线逐渐趋向于点P0时,并且割线PP0的极限位置P0T存在,则称P0T为曲线在P0处的切线。
一阶导数表示的是函数的变化率,最直观的表现就在于函数的单调性:
设f(x)在[a,b]上连续,在(a,b)内具有一阶导数,那么:
(1)若在(a,b)内f'(x)>0,则f(x)在[a,b]上的图形单调递增;
(2)若在(a,b)内f’(x)<0,则f(x)在[a,b]上的图形单调递减;
(3)若在(a,b)内f'(x)=0,则f(x)在[a,b]上的图形是平行(或重合)于x轴的直线,即在[a,b]上为常数。
判断函数极大值以及极小值。结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。
参考资料来源:搜狗百科——二阶导数
参考资料来源:搜狗百科——一阶导数
展开全部
应该说是函数在某一点处一阶导数为0,二阶导数为1,此时
表示函数在这一点取极小值(简单解释:一阶导数为零,那么为稳定点,二阶导数为1>0,那么一阶导数在此点左边为负,右边为正,故原函数在此点左边递减,右边递增。即为极小值。)
如果函数一阶导数恒为0,那么更高阶导数必然都为0.
类似的,一阶导数为0,二阶导数若小于0,那么就是极大值了
表示函数在这一点取极小值(简单解释:一阶导数为零,那么为稳定点,二阶导数为1>0,那么一阶导数在此点左边为负,右边为正,故原函数在此点左边递减,右边递增。即为极小值。)
如果函数一阶导数恒为0,那么更高阶导数必然都为0.
类似的,一阶导数为0,二阶导数若小于0,那么就是极大值了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一阶导数等于零,说明这个数是常数。二阶导数等于1,说明原来的式子最高的是二次项,而且二次项是0.5x∧2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |