怎么证明:等边三角形的三个角相等,并且每个角都等于60°?
等边三角形是最特殊的等腰三角形。证明如下:因为等边三角形为等腰三角形,根据等边对等角,可以得到三个角相等。根据内角和为180°知每个角为60°。
等边三角形(又称正三边形),为三边相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。等边三角形也是最稳定的结构。等边三角形是特殊的等腰三角形,所以等边三角形拥有等腰三角形的一切性质。
(1)等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
(2)等边三角形每条边上的中线、高线和角平分线互相重合。(三线合一)。
(3)等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或角的平分线所在的直线。
(4)等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)
(5)等边三角形内任意一点到三边的距离之和为定值。(等于其高)
(6)等边三角形拥有等腰三角形的一切性质。(因为等边三角形是特殊的等腰三角形)
等边三角形的性质与判定理解:
首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。
其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。
在全等证明题目中往往把等边三角形作为背景图形,在解题时我们要善于运用等边三角形的特殊性来达到证明全等的目的。
由于等边三角形的中位线,垂线和角平分线都重叠,
所以AD垂直BC,
又因为BD等于AB的一半,
即直角三角形的一直角边等于斜边的一半,
所以角BAD等于30度,角ABD等于60度.
同样的道理可以得,叫CAD等于30度,角ACD等于60度.
又因为角BAC=角BAD+角CAD=60度
所以角BAC=角ABC=角ACB=60度
即:等边三角形的三个角都相等,并且每个角都等于60度