计算定积分∫(π/2 ~ -π/2) x(sinx+cosx)^2 dx 函数y=sin^4x+cos^4x的导数是
展开全部
∫x(sinx+cosx)²
dx
=∫x(1+sin2x)
dx
=∫x
dx+∫xsin2x
dx
=1/2*x²-1/2*∫x
d(cos2x)
=1/2*x²-1/2*xcos2x+1/2*∫cos2x
dx
=1/2*x²-1/2*xcos2x+1/4*∫cos2x
d(2x)
=1/2*x²-1/2*xcos2x+1/4*sin2x
然后将积分上下限带进去计算即可
y=sin^4x+cos^4x
y'=4sin³x*(sinx)'+4cos³x*(cosx)'
=4sin³x*cosx-4cos³x*sinx
=4sinxcosx(sin²x-cos²x)
=2sin2x*(-cos2x)
=-2sin2x*cos2x
=-cos4x
dx
=∫x(1+sin2x)
dx
=∫x
dx+∫xsin2x
dx
=1/2*x²-1/2*∫x
d(cos2x)
=1/2*x²-1/2*xcos2x+1/2*∫cos2x
dx
=1/2*x²-1/2*xcos2x+1/4*∫cos2x
d(2x)
=1/2*x²-1/2*xcos2x+1/4*sin2x
然后将积分上下限带进去计算即可
y=sin^4x+cos^4x
y'=4sin³x*(sinx)'+4cos³x*(cosx)'
=4sin³x*cosx-4cos³x*sinx
=4sinxcosx(sin²x-cos²x)
=2sin2x*(-cos2x)
=-2sin2x*cos2x
=-cos4x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询