∑(n从1到正无穷)(-1)^n为什么是发散的?请详细说明,谢谢
1个回答
展开全部
这两个级数的部分和是无法用初等函数表示的,必须用单调有界原理证明其敛散性。
对级数∑(1/根号n):级数的前2^n项的和>1+1/2+...+1/2^n
>1+1/2+1/4+1/4+1/8+...+1/8+...+1/2^n+...+1/2^n(*)(这个表达式
是因为1/3>1/4,1/5>1/8,1/6>1/8,1/7>1/8,以及
1/k>1/2^n,当2^(n-1)+1<=k<2^n--1时。
注意到(*)式=1+1/2+1/2+1/2+1/2+...+1/2=1+(n--1)/2,
由此知级数部分和没有上界,于是发散。
第二个利用不等式1/n^2<1/【(n--1)n】=1/(n--1)--1/n,
于是级数的前n项的和<2,级数收敛。
对级数∑(1/根号n):级数的前2^n项的和>1+1/2+...+1/2^n
>1+1/2+1/4+1/4+1/8+...+1/8+...+1/2^n+...+1/2^n(*)(这个表达式
是因为1/3>1/4,1/5>1/8,1/6>1/8,1/7>1/8,以及
1/k>1/2^n,当2^(n-1)+1<=k<2^n--1时。
注意到(*)式=1+1/2+1/2+1/2+1/2+...+1/2=1+(n--1)/2,
由此知级数部分和没有上界,于是发散。
第二个利用不等式1/n^2<1/【(n--1)n】=1/(n--1)--1/n,
于是级数的前n项的和<2,级数收敛。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询