已知a>0,当∫(cosx-sinx)dx(上限a,下限O)取最大值时,a的最小值为___________(要详细过程,谢谢!)
1个回答
展开全部
∫[0->a) (cosx-sinx) dx
= cosx+sinx(0->a)
= cosa+sina-cos0-sin0
= cosa+sina-1
设f(a) = cosa+sina-1
= √2*sin(a+π/4) - 1
当sin(a+π/4) = 1
a+π/4 = π/2
a = π/4时,f(a)取得最大值
并且最大值为f(π/4) = √2*sin(π/4+π/4) - 1
= √2 - 1
∴a的值为π/4
= cosx+sinx(0->a)
= cosa+sina-cos0-sin0
= cosa+sina-1
设f(a) = cosa+sina-1
= √2*sin(a+π/4) - 1
当sin(a+π/4) = 1
a+π/4 = π/2
a = π/4时,f(a)取得最大值
并且最大值为f(π/4) = √2*sin(π/4+π/4) - 1
= √2 - 1
∴a的值为π/4
追问
∫[0->a) (cosx-sinx) dx
= cosx+sinx(0->a)
= cosa+sina-cos0-sin0
= cosa+sina-1
这个过程我不大理解,请解释一下,谢谢!
追答
cosx的积分是sinx
sinx的积分是-cosx
所以积分∫(cosx-sinx) = ∫cosx dx - ∫sinx dx
= sinx - (-cosx)
= sinx + cosx
求得原函数后再代入上限和下限,即∫(a->b) f(x) dx = F(b) - F(a),F(x)是f(x)的原函数
= (sinx + cosx) |(上限a,下限0)
= (sina + cosa) - (sin0 + cos0),上限a代入的原函数再减去下限0代入的原函数
= (sina + cosa) - (0 + 1)
= sina + cosa - 1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询