数列an中,a1=1,a(n+1)=(an+2)/an,且bn=(an-2)/(an+1),(1)证明bn是等比数列;(2)求bn的Sn,及limSn
2个回答
2011-10-26 · 知道合伙人教育行家
关注
展开全部
1)b(n+1)=[a(n+1)-2]/[a(n+1)+1]
=[(an+2)/an-2]/[(an+2)/an+1]
=[an+2-2an]/[an+2+an]
=(2-an)/(2+2an)
=-1/2*(an-2)/(an+1)
=-1/2*bn,
所以,{bn}是首项为 (a1-2)/(a1+1)=(1-2)/(1+1)=-1/2,公比为-1/2的等比数列。
2)由1)知,bn=(-1/2)^n,
所以,Sn=(-1/2)*[1-(-1/2)^n]/(1+1/2)=-1/3*[1-(-1/2)^n]
因此,lim(n→∞)Sn=-1/3。
=[(an+2)/an-2]/[(an+2)/an+1]
=[an+2-2an]/[an+2+an]
=(2-an)/(2+2an)
=-1/2*(an-2)/(an+1)
=-1/2*bn,
所以,{bn}是首项为 (a1-2)/(a1+1)=(1-2)/(1+1)=-1/2,公比为-1/2的等比数列。
2)由1)知,bn=(-1/2)^n,
所以,Sn=(-1/2)*[1-(-1/2)^n]/(1+1/2)=-1/3*[1-(-1/2)^n]
因此,lim(n→∞)Sn=-1/3。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询