求怎么证明函数单调性 和奇偶性?

丨旋转木马灬
2011-10-26 · 超过37用户采纳过TA的回答
知道小有建树答主
回答量:127
采纳率:0%
帮助的人:120万
展开全部
定义证明
单调性:设X1<X2 算f(x1)-f(x2) 若大于0 则减函数,反之则增函数
奇偶性:f(x)=f(-x)则偶函数 ,f(x)=-f(-x)是奇函数~
zycbdzy1516
2011-10-26 · 超过13用户采纳过TA的回答
知道答主
回答量:41
采纳率:0%
帮助的人:39.3万
展开全部
单调性:令x1>x2(x1,x2属于定义域,且连续),比较f(x1)和f(x2)的大小,有作差和作商两种,如果f(x1)>f(x2)则为增函数,f(x1)<f(x2)则为减函数
奇偶性:如果f(x)=f(-x)则为奇函数,f(x)=-f(-x)则为偶函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式