十字相乘法到底是怎么回事?怎么做?

 我来答
漆语朱水
2019-03-06 · TA获得超过3.3万个赞
知道大有可为答主
回答量:1.2万
采纳率:26%
帮助的人:789万
展开全部
⒈十字相乘法概念
  十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1a2,把常数项c分解成两个因数c1,c2的积c1c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。
[编辑本段]例题
  例1
把2x^2;-7x+3分解因式.
  分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分
  别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.
  分解二次项系数(只取正因数):
  2=1×2=2×1;
  分解常数项:
  3=1×3=3×1=(-3)×(-1)=(-1)×(-3).
  用画十字交叉线方法表示下列四种情况:
  1
1
  ╳
  2
3
  1×3+2×1
  =5
  1
3
  ╳
  2
1
  1×1+2×3
  =7
  1
-1
  ╳
  2
-3
  1×(-3)+2×(-1)
  =-5
  1
-3
  ╳
  2
-1
  1×(-1)+2×(-3)
  =-7
  经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
  解
2x^2;-7x+3=(x-3)(2x-1).
  一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:
  a1
c1
  

  a2
c2
  a1a2+a2c1
  按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即
  ax2+bx+c=(a1x+c1)(a2x+c2).
  像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.
http://baike.baidu.com/view/198055.htm
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式