请证明对数的换底公式
2个回答
展开全部
用定义证明:logaN=logbN/logba
证:b^x=N,b^y=a,,则a^(x/y)=[a^(1/y)]^x=b^x=N
设a^b=N…(1),则b=logaN…(2),把(2)代入(1)即得对数恒等式:
a^(logaN)=N…(3)
把(3)两边取以m为底的对数得:logaN·logma=logmN
所以logaN=(logmN)/(logma)
证:b^x=N,b^y=a,,则a^(x/y)=[a^(1/y)]^x=b^x=N
设a^b=N…(1),则b=logaN…(2),把(2)代入(1)即得对数恒等式:
a^(logaN)=N…(3)
把(3)两边取以m为底的对数得:logaN·logma=logmN
所以logaN=(logmN)/(logma)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
换底公式的形式
换底公式是一个比较重要的公式,在很多对数的计算中都要使用,也是高中数学的重点。 log(a)(b)表示以a为底的b的对数。 换底公式就是 log(a)(b)=log(n)(b)/log(n)(a)
编辑本段换底公式的推导过程
若有对数log(a)(b)设a=n^x,b=n^y(n>0,且n不为1)如:log(10)(5)=log(5)(5)/log(5)(10) 则log(a)(b)=log(n^x)(n^y) 根据对数的基本公式 log(a)(m^n)=nloga(m)和基本公式log(a^n)m=1/n×log(a)m 易得 log(n^x)(n^y)=y/x 由a=n^x,b=n^y可得x=log(n)(a),y=log(n)(b) 则有:log(a)(b)=log(n^x)(n^y)=log(n)(b)/log(n)(a) 得证:log(a)(b)=log(n)(b)/log(n)(a) 例子:log(a)(c)*log(c)(a)=log(c)(c)/log(c)(a)*log(c)(a)=log(c)(c)=1
换底公式是一个比较重要的公式,在很多对数的计算中都要使用,也是高中数学的重点。 log(a)(b)表示以a为底的b的对数。 换底公式就是 log(a)(b)=log(n)(b)/log(n)(a)
编辑本段换底公式的推导过程
若有对数log(a)(b)设a=n^x,b=n^y(n>0,且n不为1)如:log(10)(5)=log(5)(5)/log(5)(10) 则log(a)(b)=log(n^x)(n^y) 根据对数的基本公式 log(a)(m^n)=nloga(m)和基本公式log(a^n)m=1/n×log(a)m 易得 log(n^x)(n^y)=y/x 由a=n^x,b=n^y可得x=log(n)(a),y=log(n)(b) 则有:log(a)(b)=log(n^x)(n^y)=log(n)(b)/log(n)(a) 得证:log(a)(b)=log(n)(b)/log(n)(a) 例子:log(a)(c)*log(c)(a)=log(c)(c)/log(c)(a)*log(c)(a)=log(c)(c)=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询