如图AB是圆O的直径,AB=AC,D,E在圆O上,求证BD=DE
1个回答
展开全部
证明:
连接AD
∵AB是直径
∴AD⊥BC
∵AB=AC,即⊿ABC是等腰三角形
根据三线合一,BD=CD
∵ABDE四点共圆
∴∠CED=∠B
∵∠B=∠C【∵AB=AC】
∴∠C=∠CED
∴CD=DE
∴BD=DE
连接AD
∵AB是直径
∴AD⊥BC
∵AB=AC,即⊿ABC是等腰三角形
根据三线合一,BD=CD
∵ABDE四点共圆
∴∠CED=∠B
∵∠B=∠C【∵AB=AC】
∴∠C=∠CED
∴CD=DE
∴BD=DE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
创远信科
2024-07-24 广告
2024-07-24 广告
同轴线介电常数是指同轴电缆中介质对电场的响应能力,通常用ε_r表示,是介质相对于真空或空气的电容率。这一参数直接影响信号在电缆中的传播速度和效率。在选择同轴电缆时,需要考虑其介电常数,因为它与电缆的插入损耗、带宽和传输质量等性能密切相关。创...
点击进入详情页
本回答由创远信科提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询