不定积分递推式
2个回答
展开全部
可以根据降幂公式和分部积分法进行求解,解答过程如下:
∫tan^nxdx=∫tan^(n-2)x·(sec²x-1)dx
=∫tan^(n-2)x·sec²xdx-∫tan^(n-2)xdx
=∫tan^(n-2)x·dtanx-∫tan^(n-2)xdx
=[tan^(n-1)x]/(n-1)-∫tan^(n-2)xdx
扩展资料:
1、常用几种积分公式:
(1)∫0dx=c
(2)∫x^udx=(x^(u+1))/(u+1)+c
(3)∫1/xdx=ln|x|+c
(4)∫a^xdx=(a^x)/lna+c
(5)∫e^xdx=e^x+c
(6)∫sinxdx=-cosx+c
2、一般定理
定理1:设f(x)在区间[a,b]上连续,那么f(x)在[a,b]上可积。
定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,那么f(x)在[a,b]上可积。
定理3:设f(x)在区间[a,b]上单调,那么f(x)在[a,b]上可积。
∫tan^nxdx=∫tan^(n-2)x·(sec²x-1)dx
=∫tan^(n-2)x·sec²xdx-∫tan^(n-2)xdx
=∫tan^(n-2)x·dtanx-∫tan^(n-2)xdx
=[tan^(n-1)x]/(n-1)-∫tan^(n-2)xdx
扩展资料:
1、常用几种积分公式:
(1)∫0dx=c
(2)∫x^udx=(x^(u+1))/(u+1)+c
(3)∫1/xdx=ln|x|+c
(4)∫a^xdx=(a^x)/lna+c
(5)∫e^xdx=e^x+c
(6)∫sinxdx=-cosx+c
2、一般定理
定理1:设f(x)在区间[a,b]上连续,那么f(x)在[a,b]上可积。
定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,那么f(x)在[a,b]上可积。
定理3:设f(x)在区间[a,b]上单调,那么f(x)在[a,b]上可积。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |