设数列{an}前n项和为Sn,已知a1+2a2+3a3+...+nan=(n-1)Sn+2n,

(1)求a2,a3的值;(2)求证:数列{Sn+2}是等比数列。... (1)求a2,a3的值;(2)求证:数列{Sn+2}是等比数列。 展开
伦绿海0I1b0e
2011-10-27 · TA获得超过609个赞
知道答主
回答量:119
采纳率:0%
帮助的人:139万
展开全部
a1=2,
a1+2a2=a1+a2+4
a2=4
a1+2a2+3a3=2(a1+a2+a3)+6
10+3a3=12+2a3+6
a3=8
(a1+a2+a3+.....+an)+(a2+a3+......+an)+......+an=sn+(sn-s1)+(sn-s2)+.....+(sn-s(n-1))
n*sn-(s1+s2+...+s(n-1))=(n-1)sn+2n
sn=(s1+s2+......+s(n-1))+2n
s(n+1)=(s1+s2+....+sn))+2(n+1)
a(n+1)=sn+2
an=s(n-1)+2
a(n+1)-an=an
a(n+1)=2an
{an}是等比数列
an=2^n
sn=2(2^n-1)=2^(n+1)-2
sn+2=2^(n+1)
[s(n+1)+2]/[sn+2]=2为常数
得证
TAT萝卜
2011-10-27 · TA获得超过4972个赞
知道大有可为答主
回答量:3084
采纳率:66%
帮助的人:1116万
展开全部
第一问简单的,不说了
第二问可以这样的:
a1+2a2+3a3+...+nan=(n-1)Sn+2n...............................1式
a1+2a2+3a3+...+(n-1)a(n-1)=(n-2)S(n-1)+2(n-1)...............2式
1式-2式得:
nan=(n-1)Sn+2n-[(n-2)S(n-1)+2(n-1)]
=n[Sn-S(n-1)]-Sn+2S(n-1)+2
=nan-Sn+2S(n-1)+2
所以-Sn+2S(n-1)+2=0
Sn=2S(n-1)+2
Sn+2=2S(n-1)+4=2[S(n-1)+2]
Sn+2/[S(n-1)+2]=2
为等比数列
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
crs0723
2011-10-27 · TA获得超过2.5万个赞
知道大有可为答主
回答量:1.6万
采纳率:85%
帮助的人:4491万
展开全部
(1)
a1+2a2+3a3+...+nan=(n-1)Sn+2n
a1+2a2+...+(n-1)a(n-1)=(n-2)S(n-1)+2n-2
上式减下式,nan=(n-1)[Sn-S(n-1)]+S(n-1)+2=(n-1)an+S(n-1)+2
S(n-1)=an-2
Sn=a(n+1)-2
an=a(n+1)-an
a(n+1)=2an
a1=2
a2=4
a3=8
(2)
Sn+2=a(n+1)
因为{an}是等比数列,所以{Sn+2}是等比数列
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
rge1211
2011-10-27 · TA获得超过1881个赞
知道小有建树答主
回答量:671
采纳率:100%
帮助的人:339万
展开全部
a1+2a2+3a3+...+nan=(n-1)Sn+2n
a1+2a2+3a3+...+(n-1)a(n-1)=(n-2)S(n-1)+2(n-1)
(n-1)Sn+2n - [(n-2)S(n-1)+2(n-1)] = nan=n[Sn-S(n-1)]
(n-1)Sn-(n-2)S(n-1)+2=nSn-nS(n-1)
Sn=2S(n-1)+2
Sn+2=2S(n-1)+4=2[S(n-1)+2]
(Sn+2)/[S(n-1)+2] = 2
公比为2的等比数列

a1=2=S1
2+2a2=S2+4
S2=2a2-2=a1+a2=2+a2
a2=4,S2=6

2+8+3a3=2S3+6
S3=(4+3a3)/2=S2+a3=6+a3
4+3a3=12+2a2
a3=8, S3=14
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友27a58433f
2011-10-27
知道答主
回答量:37
采纳率:0%
帮助的人:10.3万
展开全部
首先,你可以令N=1,2,3,依次可求出,A1,A2,A3=2,4,8.
第二问。可以如下:
a1+2a2+3a3+...+nan=(n-1)Sn+2n,
a1+2a2+~(n-1)an-1=(n-2)Sn-2+2(n-1);
上式减下式可得:
an=Sn-1+2
因此有:
a+1=Sn+2
再下式减上式有:
an+1=2an.
到了这里了,同学会了吧。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(6)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式