求极限lim(x→0)(e^x-e^-x)/sin x
1个回答
展开全部
应用极限公式:lim(y->0) (e^y - 1) / y = 1 以及 lim(y->0) siny / y = 1
lim(x->0) (e^x - e^-x) / sinx
= lim (e^x - 1/e^x) / sinx
= lim (e^2x - 1) / (e^x*sinx)
= 2 * lim (e^2x - 1) / (2x) * x / sinx * 1/e^x
= 2 * (1) * (1) * (1/1)
= 2
lim(x->0) (e^x - e^-x) / sinx
= lim (e^x - 1/e^x) / sinx
= lim (e^2x - 1) / (e^x*sinx)
= 2 * lim (e^2x - 1) / (2x) * x / sinx * 1/e^x
= 2 * (1) * (1) * (1/1)
= 2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询