关于反函数二阶导数的问题

我的教科书上是这么解释的:由于dx/dy=1/y‘,注意到y'即y'(x)表示y对x的导数,它是关于x的函数。因此在求(dx)^2/d(y^2)时应把x看作中间变量,由复... 我的教科书上是这么解释的:由于dx/dy=1/y‘,注意到y'即y'(x)表示y对x的导数,它是关于x的函数。因此在求(dx)^2/d(y^2)时应把x看作中间变量,由复合函数求导法则,可得:
(dx)^2/d(y^2)
=d(1/y')/dy
=d(1/y')/dx×(dx/dy)
=-y''/(y'^2)×(1/y)
=-y''/(y'^3)
谁能帮我解释一下为什么是这样,为什么是d(1/y')/dy ,我很不理解,还有那个dY的Y到底是哪个Y
展开
sxzhchen
2011-10-27 · TA获得超过5887个赞
知道大有可为答主
回答量:1487
采纳率:100%
帮助的人:2084万
展开全部
这样解释你或者明白:令y=y(x), 其反函数为x=x(y), 则dx/dy=1/y'(x)=1/y'[x(y)], 这是以x为中间变量y为自变量的复合函数. 因此,
d²x/dy²=d(1/y'[x(y)])/dy=d(1/y'(x))/dx × dx/dy=-y''(x)/[y'(x)]² × 1/y'(x)=-y''(x)/[y'(x)]³
追问
那我这么算有什么不对吗,一阶反函数导数是1/y',再求它的导数,为(-1)(1/y'^2)*y''
追答
注意, 1/y'=1/y'(x)这是关于x的函数, 所以它对x的导数是(-1)(1/y'^2)*y'', 但是现在是要对y求导数, 即1/y'=1/y'(x)=1/y'[x(y)]视作关于y的函数, 而这是复合函数, 对y的导数当然是对x的导数乘以x对y的导数, 所以答案应该是(-1)(1/y'^2)*y''再乘以dx/dy, 即(-1)(1/y'^2)*y''×1/y'
夏日悸动的旋律
高粉答主

2020-04-04 · 关注我不会让你失望
知道答主
回答量:7.8万
采纳率:13%
帮助的人:5044万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式