高二数学直线方程问题

1,设a,b,c分别是△ABC中∠A,∠B,∠C所对边的边长,则直线sinA·x+ay+c=0与bx-sinB·y+sinC=0的位置关系是_______2,两条互相平行... 1,设a,b,c分别是△ABC中∠A,∠B,∠C所对边的边长,则直线sinA·x+ay+c=0与bx-sinB·y+sinC=0的位置关系是_______ 2,两条互相平行的直线L1与L2分别经过定点A(6,2)和B(-3,-1),并各自绕定点旋转,设L1与L2间的距离为d,(1)求d的变化范围 (2)当d最大时,求L1与L2的方程 3,已知△ABC的顶点A(3,-1),AB边上的中线所在的直线方程为3x+7y-19=0,AC边上的高所在的直线的方程为6x-5y-15=0,求BC边所在直线方程 展开
 我来答
战飞星SK
2019-10-04 · TA获得超过4001个赞
知道大有可为答主
回答量:3163
采纳率:33%
帮助的人:245万
展开全部
<p>
1.L1:sinA•x+ay+c=0与L2:bx-sinB•y+sinC=0的斜截式方程分别为: </p>
<p>L1:y=[-(sinA)/a]•x-c/a与L2: y=(b/sinB)•x+sinC/sinB. </p>
<p>由正弦定理:b/sinB=a/sinA,所以[-(sinA)/a]•(b/sinB)=-1, </p>
<p>L1、L2的斜率互为负倒数,所以两直线垂直。 </p>
<p>
2.直线AB的方程为:(y-2)/(x-6)=(2+1)/(6+3),即y=x/3,斜率k=1/3,|AB|&sup2;=(2+1)&sup2;+(6+3)&sup2;=100,|AB|=10. 在保持平行的前提下,L1、L2各自绕定点旋转,当旋转到重合时,L1、L2、AB三条直线重合,此时d=0; 当旋转到L1、L2两条直线都与AB垂直时,d最大,此时d=|AB|=10. 所以0≤d≤10. </p>
<p>
3.设AC边上的高为BD(垂足为D),已知直线BD的方程为6x-5y-15=0,斜率为6/5,所以直线AC的斜率为-5/6,又A(3,-1),所以直线AC的方程为:y+1=-5/6•(x-3),一般式:5x+6y-9=0. </p>
<p>设AB边上的中点为E,已知直线CE的方程为3x+7y-19=0,与直线AC的方程:5x+6y-9=0联立,求得C(-3,4). </p>
<p>作EF⊥AC于F,则EF//BD,因为E为AB中点,由平行截割定理知,2|FD|=|AD|,而|FD|等于E到BD的距离,设E(e,(19-3e)/7),所以有 </p>
<p>2|6*e-5*(19-3e)/7-15|/√(6&sup2;+5&sup2;)=|6*3-5*(-1)-15|/√(6&sup2;+5&sup2;), </p>
<p>即|57e-200|=28,得到e的两个值:4 or 172/57,所以,满足条件的E点有两个:E1(4,1)、E2(172/57,27/19). </p>
<p>设B(p,q),因为E为AB中点, </p>
<p>对于E1(4,1),A(3,-1),(p+3)/2=4,(q-1)/2=1,B1(5,3); </p>
<p>对于E2(172/57,27/19),A(3,-1),(p+3)/2=172/57,(q-1)/2=27/19,B2(173/57,73/19),将B2(173/57,73/19)代入BD的方程6x-5y-15=0,不成立,舍去。 </p>
<p>所以B(5,3),直线BC的方程为:(y-4)/(x+3)=(3-4)/(5+3),即x+8y-19=0</p>
<p></p>
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式