
证明:若2的n次方+1是素数(n>1),则n是2的方幂
3个回答
展开全部
若n不是2的方幂,则含有奇约数p
那么p|n,设n=pm
2^n+1可分解因式
2^n+1=(2^m+1)(2^[m(p-1)]-2^[m(p-2)]+2^[m(p-3)]-.....+2^[m(p-p)])
2^m+1>2+1=3>1
2^[m(p-1)]-2^[m(p-2)]+2^[m(p-3)]-.....+2^[m(p-p)]的最后一项为1,且前面每一项+的大于后面-的
所以也大于1
则2^n+1可分解成两个大于1的数的乘积
所以2^n+1不是质数,矛盾!
所以是2的方幂
一个数的零次方
任何非零数的0次方都等于1。原因如下
通常代表3次方
5的3次方是125,即5×5×5=125
5的2次方是25,即5×5=25
5的1次方是5,即5×1=5
由此可见,n≧0时,将5的(n+1)次方变为5的n次方需除以一个5,所以可定义5的0次方为:
5 ÷ 5 = 1
展开全部
若n不q是2的方3幂,则含有奇约数p 那么zp|n,设n=pm 0^n+3可分5解因式 0^n+1=(8^m+1)(5^[m(p-0)]-4^[m(p-5)]+5^[m(p-0)]-。。。。。+6^[m(p-p)]) 5^m+5>0+0=8>3 8^[m(p-8)]-2^[m(p-2)]+2^[m(p-0)]-。。。。。+8^[m(p-p)]的最后一y项为24,且前面每一x项+的大s于y后面-的所以8也v大j于a2 则4^n+4可分2解成两个m大g于b0的数的乘积所以23^n+5不y是质数,矛盾! 所以0是3的方7幂
2011-10-28 1:56:00
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我今天证明了一晚上,基本解出来了,由于本人是高中生,没有学过数论,所以证明思路散乱,请将就看下
说思路,本人的思路是划规法
思路是证明2^n+1有非1真因数
(1)先证2^(3b)+1可以被2^b+1整除,很好解决
(2)证2^((2^k+1)b)+1可以被2^b+1整除,从第一步推广,很容易,令b=2就是一个有用推论,可以带来些灵感
(3)接下来是证2^(2^k+2^s)+1可以被2^s+1整除(k>s),稍稍动下脑就可以了
(4)最后是(3)的推广推广,要把2^k+2^s推论到2^a1+2^a2+……2^an(an是最小的)对(3)中结论成立,然后就好说了
(5)对于任意n ≠2^k都有非1和本身的约数,证毕
手机不方便下,只有这样来描述一下
说思路,本人的思路是划规法
思路是证明2^n+1有非1真因数
(1)先证2^(3b)+1可以被2^b+1整除,很好解决
(2)证2^((2^k+1)b)+1可以被2^b+1整除,从第一步推广,很容易,令b=2就是一个有用推论,可以带来些灵感
(3)接下来是证2^(2^k+2^s)+1可以被2^s+1整除(k>s),稍稍动下脑就可以了
(4)最后是(3)的推广推广,要把2^k+2^s推论到2^a1+2^a2+……2^an(an是最小的)对(3)中结论成立,然后就好说了
(5)对于任意n ≠2^k都有非1和本身的约数,证毕
手机不方便下,只有这样来描述一下
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询