![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
2个回答
展开全部
记p=x+2y
那么x=p-2y
代入x²+y²-xy=3,得:
x²+y²-xy
=(p-2y)²+y²-(p-2y)y
=p²-4py+4y²+y²-py+2y²
=7y²-5py+p²
=3
要使得x²+y²-xy=3成立,就要使得方程7y²-5py+p²=3有实数根
Δ=(5p)²-4*7*(p²-3)=84-3p²≥0
所以-2√7≤p≤2√7
所以x+2y的最大值为2√7
那么x=p-2y
代入x²+y²-xy=3,得:
x²+y²-xy
=(p-2y)²+y²-(p-2y)y
=p²-4py+4y²+y²-py+2y²
=7y²-5py+p²
=3
要使得x²+y²-xy=3成立,就要使得方程7y²-5py+p²=3有实数根
Δ=(5p)²-4*7*(p²-3)=84-3p²≥0
所以-2√7≤p≤2√7
所以x+2y的最大值为2√7
2011-10-28
展开全部
还
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询