求函数f(x)=lnx-x/e+1在0到无穷大内零点个数 我来答 1个回答 #热议# 不吃早饭真的会得胆结石吗? 时曜席蕴涵 2020-03-27 · TA获得超过1159个赞 知道小有建树答主 回答量:1737 采纳率:100% 帮助的人:8.1万 我也去答题访问个人页 关注 展开全部 f'(x)=1/x-1/e=0得:x=e 极大值为f(e)=lne-1+1=1>0 而f(0+)=负无穷,f(无穷)=负无穷 因此f(x)在x>0有2个零点,分别位于(0,e)区间及(e,+无穷)区间 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 广告您可能关注的内容【同步精讲】初中数学函数教程视频_初中【课程】免费学补充学校学习初中数学函数教程视频,1-同步教材 2-各个版本 3-随时听 4-三种难度层次,注册简单一百,初中数学函数教程视频免费领取初初中各科视频资源,在家轻松学习!vip.jd100.com广告 其他类似问题 2022-08-15 函数f(x)=e x •|lnx|-1的零点个数为______. 2022-08-07 函数f(x)=e x lnx-1的零点个数是______个. 2022-06-13 求f(x)=e^xlnx-1 零点个数 2022-11-29 函数f(x)=Inx-x/e+2在(0,+∞)内零点的个数为 2023-07-14 若 f ( x ) = e ^ x + mx ( x - ln x ) 有且只有 1 个 零点则实 2023-11-06 f(x)=a(e*-x-1)-ln(x+1)+x,a≥0有唯一的零点 2018-01-09 设常数k>0,函数f(x)=lnx-x/e+k在(0,正无穷)内零点的个数是多少个? 5 2020-04-02 f(x)=lnx-x/e+k;k>0;在(0到无穷大)内零点有几个 4 为你推荐: