设存在常数k

设A为n阶方阵,且R(A)=n-1,A*为矩阵A的伴随矩阵,求证∶存在常数k,使(A*)^2=kA*... 设A为n阶方阵,且R(A)=n-1,A*为矩阵A的伴随矩阵,求证∶存在常数k,使(A*)^2=kA* 展开
 我来答
完黎陶勇锐
2020-03-09 · TA获得超过1231个赞
知道小有建树答主
回答量:2951
采纳率:95%
帮助的人:16.3万
展开全部
R(A)=n-1
=> |A|=0
=>AA*=|A|E=0
又因为R(AA*) 》R(A)+R(A*)-n
因此R(A*)《 1
有因为R(A)=n-1,即至少有一个n-1阶子式不等于0,即R(A*) 》1
所以R(A*)=1
=>A*=(a1,a2,...an)^T(b1,b2,...bn) (即A能表示成一个行向量乘以列向量)
=>(A*)^2=(a1,a2,...an)^T(b1,b2,...bn)(a1,a2,...an)^T(b1,b2,...bn)=(a1,a2,...an)^Tk(b1,b2,...bn)=kA*
其中k=(b1,b2,...bn)(a1,a2,...an)^t (这是一个数,因为1Xn X nX1=1)
更一般的(A*)^m=k^{m-1}A*
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式