高数一道隐函数求导的题目,有图求过程
请问红线部分是什么意思呢,不像对x求导和对y求导啊。这题目用公式法-F(x)/F(y)怎么解呢...
请问红线部分是什么意思呢,不像对x求导和对y求导啊。
这题目用公式法-F(x)/F(y)怎么解呢 展开
这题目用公式法-F(x)/F(y)怎么解呢 展开
展开全部
方程 e^y+xy=e确定y=y(x);求dy/dx ; d²y/dx²;
解法一:方程两边直接对x求导。用此法注意:e^y是y的函数,而y又是x的函数,因此将e^y
对x求导时要用复合函数的链式法则,即d(e^y)/dx=[d(e^y)/dy][dy/dx)=(e^y)y';
同样,其中xy是x和y的函数,∴d(xy)=(dx/dx)y+x(dy/dx)=y+xy';
∴有你画红线的式子:(e^y)y'+y+xy'=0;∴y'=-y/(x+e^y)
再求导一次:(e^y)(y')²+(e^y)y''+y'+y'+xy''=0,即有 (e^y)(y')²+(e^y)y''+2y'+xy''=0.
∴y''=-[(e^y)(y')²+2y']/(x+e^y);
把上面已求出的y'代入,即得:
y''=-[(e^y)y²/(x+e^y)²-2y/(x+e^y)]/(x+e^y)=[-(e^y)y²+2y(x+e^y)]/(x+e^y)³
=[2y(x+e^y)-(e^y)y²]/(x+e^y)³;
解法二:用隐函数求导公式:
设F(x,y)=e^y+xy-e=0,那么:
y'=dy/dx=-(∂F/∂x)/(∂F/∂y)=-y/(x+e^y);
注意:上面是求偏导数,x和y处于同等地位,不要再使用链式法则。
d²y/dx²=dy'/dx=[-(x+e^y)y'+y(1+y'e^y)]/(x+e^y)²
【这里是求全导数,所以要继续使用链式法则,道理与前述相同】
=[2y(x+e^y)-(e^y)y²]/(x+e^y)³;
【将上面已求出的y'代入并化简即得。】
解法一:方程两边直接对x求导。用此法注意:e^y是y的函数,而y又是x的函数,因此将e^y
对x求导时要用复合函数的链式法则,即d(e^y)/dx=[d(e^y)/dy][dy/dx)=(e^y)y';
同样,其中xy是x和y的函数,∴d(xy)=(dx/dx)y+x(dy/dx)=y+xy';
∴有你画红线的式子:(e^y)y'+y+xy'=0;∴y'=-y/(x+e^y)
再求导一次:(e^y)(y')²+(e^y)y''+y'+y'+xy''=0,即有 (e^y)(y')²+(e^y)y''+2y'+xy''=0.
∴y''=-[(e^y)(y')²+2y']/(x+e^y);
把上面已求出的y'代入,即得:
y''=-[(e^y)y²/(x+e^y)²-2y/(x+e^y)]/(x+e^y)=[-(e^y)y²+2y(x+e^y)]/(x+e^y)³
=[2y(x+e^y)-(e^y)y²]/(x+e^y)³;
解法二:用隐函数求导公式:
设F(x,y)=e^y+xy-e=0,那么:
y'=dy/dx=-(∂F/∂x)/(∂F/∂y)=-y/(x+e^y);
注意:上面是求偏导数,x和y处于同等地位,不要再使用链式法则。
d²y/dx²=dy'/dx=[-(x+e^y)y'+y(1+y'e^y)]/(x+e^y)²
【这里是求全导数,所以要继续使用链式法则,道理与前述相同】
=[2y(x+e^y)-(e^y)y²]/(x+e^y)³;
【将上面已求出的y'代入并化简即得。】
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
就是两边对x求导!
注意,y时x的函数
e^y为复合函数,
先对e^y整体求导,为指数函数,则导数为e^y,再对y求导,为y'
同理,xy对求导,=y+xy'
所以……
注意,y时x的函数
e^y为复合函数,
先对e^y整体求导,为指数函数,则导数为e^y,再对y求导,为y'
同理,xy对求导,=y+xy'
所以……
追答
用公式法时,对x求导F'x,y看成常数,对y求导F'y,x看成常数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询