设f(x)及g (x)在[a,b]上连续,证明(1)若在[a,b]上

设f(x)与g(x)在[a,b]上连续,证明:(1)若在[a,b]上f(x)>=0,且∫f(x)dx=0,则在[a,b]上f(x)恒等于0(2)若在[a,b]上f(x)>... 设f(x)与g(x)在[a,b]上连续,证明:
(1)若在[a,b]上f(x)>=0,且∫ f(x) dx=0,则在[a,b]上f(x)恒等于0
(2)若在[a,b]上f(x)>=g(x),且∫ f(x) dx=∫g(x) dx,则在[a,b]上f(x)恒等于g(x)
注:∫ 右上标为b,下标为a
展开
 我来答
抗琨元弘义
2020-06-24
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
(1)用反证法
不妨设存在一点p,使f(p)>0,那么连续函数由保号性,存在p一个领域(p-c,p+c),
当x∈(p-c,p+c)时,f(x)>0
∫ f(x) dx =∫ f(x) dx + ∫ f(x) dx +∫ f(x) dx
>= ∫ f(x) dx >0
与∫ f(x) dx = 0 矛盾.
所以f(x)=0
(2)f(x)>=g(x),则f(x)-g(x)>=0,
∫ f(x) dx=∫g(x)dx,则∫ f(x) dx - ∫g(x)dx = ∫ (f(x) -g(x))dx =0
由(1)结论有f(x)-g(x)=0,
证毕
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式