设3阶实对称矩阵的特征值为1,1,-1,且对应特征值1的特征向量有列向量P=(1 ,1, 1)和Q(2,2,1),求

此矩阵... 此矩阵 展开
lry31383
高粉答主

2011-10-28 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
解: 因为对称矩阵的属于不同特征值的特征向量正交
所以若设属于特征值 -1 的特征向量为 (x1,x2,x3)^T
则有 x1+x2+x3=0
2x1+2x2+x3=0
方程组的基础解系为 ζ3=(1,-1,0)^T
所以属于特征值 -1 的特征向量为 c(1,-1,0)^T, c为非零常数.

令P=
1 2 1
1 2 -1
1 1 0
则P可逆, 且 P^-1AP=diag(1,1,-1)
所以有 A = Pdiag(1,1,-1)P^-1 =
0 1 0
1 0 0
0 0 1

注: 为避免求P的逆, 可将特征值1的特征向量正交化, 之后将3个向量单位化
匿名用户
2011-11-07
展开全部
这太麻烦, 找个例题, 比葫芦画瓢
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式