2个回答
2011-10-28
展开全部
证明:
过点D作DE∥AC,交BC延长线于点E;
∵AD∥CE,DE∥AC,
∴ACED是平行四边形,
∴DE = AC = BD ,
∴DBE = ∠DEB = ∠ACB ;
在△ABC和△DCB中,AC = DB ,∠ACB = ∠DBC ,BC为公共边,
∴△ABC ≌ △DCB ,
∴AB = DC ,
∴梯形ABCD是等腰梯形。
过点D作DE∥AC,交BC延长线于点E;
∵AD∥CE,DE∥AC,
∴ACED是平行四边形,
∴DE = AC = BD ,
∴DBE = ∠DEB = ∠ACB ;
在△ABC和△DCB中,AC = DB ,∠ACB = ∠DBC ,BC为公共边,
∴△ABC ≌ △DCB ,
∴AB = DC ,
∴梯形ABCD是等腰梯形。
展开全部
证明:∵AD平行BC
∴∠DAC=∠ACB,∠ADB=∠DBC
又∵AC=BD
∴∠DBC=∠ACB
∴∠DBC=∠DAC
又∵∠ADB=∠DBC
∴∠DAC=∠ADB
在△ADB和△DAC中
∠DAC=∠ADB
AD=AD
AC=BD
∴△ADB≌△DAC
∴AB=DC
简单一点滴:
过D做DM‖AC与BC的延长线交与M
则AC=Dm=BD
∠DBM=∠DMB=∠∠ACB
BC=BC,AC=BD
△ACB≌△DBC
望采纳
AB=CD
∴∠DAC=∠ACB,∠ADB=∠DBC
又∵AC=BD
∴∠DBC=∠ACB
∴∠DBC=∠DAC
又∵∠ADB=∠DBC
∴∠DAC=∠ADB
在△ADB和△DAC中
∠DAC=∠ADB
AD=AD
AC=BD
∴△ADB≌△DAC
∴AB=DC
简单一点滴:
过D做DM‖AC与BC的延长线交与M
则AC=Dm=BD
∠DBM=∠DMB=∠∠ACB
BC=BC,AC=BD
△ACB≌△DBC
望采纳
AB=CD
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询