1/2+1/4+1/8+1/16+1/32+1/64+1/125+1/256+1/512
5个回答
展开全部
这个是等比数列的加法。求和公式:Sn=n*a1(q=1)
Sn=a1(1-q^n)/(1-q)
=(a1-a1q^n)/(1-q)
=a1/(1-q)-a1/(1-q)*q^n ( 即a-aq^n)
(前提:q不等于 1) 所以结果是1-(1/2)^9=511/512
Sn=a1(1-q^n)/(1-q)
=(a1-a1q^n)/(1-q)
=a1/(1-q)-a1/(1-q)*q^n ( 即a-aq^n)
(前提:q不等于 1) 所以结果是1-(1/2)^9=511/512
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:这是首项为1/2,公比为1/2的等比数列,
一共有9项,
则原式=1/2[1-(1/2)^9]/(1-1/2)
=1-(1/2)^9
=1-1/512
=511/512
一共有9项,
则原式=1/2[1-(1/2)^9]/(1-1/2)
=1-(1/2)^9
=1-1/512
=511/512
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/512
=1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/512+1/512-1/512
=1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/256-1/512
=1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/128-1/512
=1/2+1/4+1/8+1/16+1/32+1/64+1/64-1/512
=...
=1/2+1/2-1/512
=1-1/512
=511/512
=1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/512+1/512-1/512
=1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/256-1/512
=1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/128-1/512
=1/2+1/4+1/8+1/16+1/32+1/64+1/64-1/512
=...
=1/2+1/2-1/512
=1-1/512
=511/512
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/512
=(1-1/2)+(1/2-1/4)+(1/4-1/8)+(1/8-1/16)+(1/16-1/32)+(1/32-1/64)+(1/64-1/128)+(1/128-1/256)+(1/256-1/512)
=1-1/2+1/2-1/4+1/4-1/8+1/8-1/16+1/16-1/32+1/32-1/64+1/64-1/128+1/128-1/256+1/256-1/512
=1-1/512
=511/512
=(1-1/2)+(1/2-1/4)+(1/4-1/8)+(1/8-1/16)+(1/16-1/32)+(1/32-1/64)+(1/64-1/128)+(1/128-1/256)+(1/256-1/512)
=1-1/2+1/2-1/4+1/4-1/8+1/8-1/16+1/16-1/32+1/32-1/64+1/64-1/128+1/128-1/256+1/256-1/512
=1-1/512
=511/512
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询