求证:((a-b)(b+c))/(c-a)+((a+c)(b-c))/(a-b)+((a+b)(c-a))/(b-c)=0
求证:((a-b)(b+c))/(c-a)+((a+c)(b-c))/(a-b)+((a+b)(c-a))/(b-c)=0http://www.ouliu.net/j/a...
求证:((a-b)(b+c))/(c-a)+((a+c)(b-c))/(a-b)+((a+b)(c-a))/(b-c)=0
http://www.ouliu.net/j/a942de2c0ac4c7418b539a7efcf025ac.png 展开
http://www.ouliu.net/j/a942de2c0ac4c7418b539a7efcf025ac.png 展开
展开全部
设:x=a+b,y=b+c,z=a+c
可得a-b=z-y,b-c=x-z,c-a=y-x
原式= (z-y)/x+(x-z)/y + (y-x)/z+(z-y)(x-z)(y-x)/(xyz)
= (yz-y²+x²-zx)/(xy) + (y-x)[xy+(z-y)(x-z)]/(xyz)
= (x-y)(x+y-z)/(xy) - (x-y)[xy+(zx-z²-xy+yz)]/(xyz)
= (x-y)(zx+yz-z²)/(xyz) - (x-y)(zx-z²+yz)/(xyz)
= 0
此为奥数
可得a-b=z-y,b-c=x-z,c-a=y-x
原式= (z-y)/x+(x-z)/y + (y-x)/z+(z-y)(x-z)(y-x)/(xyz)
= (yz-y²+x²-zx)/(xy) + (y-x)[xy+(z-y)(x-z)]/(xyz)
= (x-y)(x+y-z)/(xy) - (x-y)[xy+(zx-z²-xy+yz)]/(xyz)
= (x-y)(zx+yz-z²)/(xyz) - (x-y)(zx-z²+yz)/(xyz)
= 0
此为奥数
追问
对于高一来说这也是奥数?=。=做指数函数时的时候遇到的。。。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询