高中抛物线的题目

已知抛物线y^2=x及直线L:y=x-4,是否存在正方形ABCD,其顶点A、C在L上且顶点B、D在抛物线上?若存在,求出正方形的边长;若不存在,说明理由。答案是存在,边长... 已知抛物线y^2=x 及直线L:y=x-4 ,是否存在正方形ABCD,其顶点A、C在L上且顶点B、D在抛物线上?若存在,求出正方形的边长;若不存在,说明理由。

答案是存在,边长为根号13。 求解析!!!
展开
志媛
2011-10-29
知道答主
回答量:13
采纳率:0%
帮助的人:12.8万
展开全部
因为A,C在L上,即AC为正方形的对角线,所以BD为另一条对角线,设BD所在的直线为L',且L'⊥L,所以斜率为-1,设直线L'为y=-x+b,直线L'与抛物线相交于D(X1,y1),B(x2,y2),联立L',抛物线的方程组,得x1+x2=2b+1,y1+y2=-1,而且BD的中点在L上,所以将中点代入直线方程,中点为E(1/2(x1+x2),1/2(y1+y2)),所以E(b+1/2,-1/2).最后得b=3,根据弦长公式得LBD=根号下26,所以正方形边长为;根号2/2倍LBD=(根号2/2)×根号26=根号13.
利用正方形对角线垂直且平分
wyhhh1986
2011-10-29 · TA获得超过1056个赞
知道小有建树答主
回答量:487
采纳率:0%
帮助的人:443万
展开全部
设抛物线上两点d1(a1,b1),d2(a2,b2) 直线上点d3(a3,b3)作直线d1d3垂直于d1d2于d1
a1-a2=b1-b2(正方形对边平行)
b1^2-b2^2=b1-b2
b1+b2=1
b3=a3-4
a3-a1=-(b3-b1)
b3+4-b1^2=-(b3-b1)
b3=(b1+b1^2-4)/2
因为是正方形,边长一样
(a3-a1)^2+(b3-b1)^2=(a2-a1)^2+(b2-b1)^2
全部转化为关于b1的等式:
[(b1+b1^2-4)/2+4-b1^2]^2+[(b1+b1^2-4)/2-b1]^2=[(1-b1)^2-b1^2]^2+(1-b1-b1)^2
[-1/2b1^2+1/2b1+2]^2+[1/2b1^2-1/2b1-2]^2=[-2b1+1]^2+(1-2b1)^2
2[1/2b1^2-1/2b1-2]^2=2(1-2b)^2
1/2b1^2-1/2b1-2=1-2b1
或2b1-1=1/2b1^2-1/2b1-2
先考虑一式
1/2b1^2-1/2b1-2=1-2b1
b1^2+3b1-6=0
b1=-3/2*(1±√5)
二式:2b-1=1/2b1^2-1/2b1-2
b1^2-5b-2=0
b1=1/2*(5±√33)
则边长为:√2(1-2b1)分别把b1值代入
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
TAT萝卜
2011-10-29 · TA获得超过4972个赞
知道大有可为答主
回答量:3084
采纳率:66%
帮助的人:1080万
展开全部
志媛 正解
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式