tanx-x的等价无穷小是怎么算出来的?

 我来答
小旭聊职场
高粉答主

2021-03-30 · 我是一个职场小达人,对职场领域非常了解。
小旭聊职场
采纳数:406 获赞数:21914

向TA提问 私信TA
展开全部

^^e^tan-e^x=e^x(e^(tanx-x)-1),x→0时,e^x→1,e^(tanx-x)-1等价于tanx-x。

所以e^tan-e^x等价于tanx-x。

所以,x→0时,tanx-x等价于x^n,所以

1=lim(x→0) (tanx-x)/x^n

=lim(x→0) ((secx)^2-1)/nx^(n-1)

=lim(x→0) (tanx)^2/nx^(n-1)

=lim(x→0) x^2/nx^(n-1)

=lim(x→0) x^(3-n)/n

所以n=3。

扩展资料:

注意事项:

1、求极限是高等数学中最重要的内容之一,也是高等数学的基础部分,因此熟练掌握求极限的方法对学好高等数学具有重要的意义。洛比达法则用于求分子分母同趋于零的分式极限。

2、若条件符合,洛必达法则可连续多次使用,直到求出极限为止。

3、洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等。



休闲娱乐达人天际
高能答主

2021-03-30 · 致力于休闲娱乐知识的解答,分享娱乐知识。
休闲娱乐达人天际
采纳数:1605 获赞数:396576

向TA提问 私信TA
展开全部

推荐于 2019.11.15

lim(x~0)(tanx-x)/x^k

=lim(x~0)[(secx)^2-1]/kx^(k-1)

=lim(x~0)(tanx)^2/kx^(k-1)

~lim(x~0)x^(3-k)/k

=A为一个常数

所以3-k=0

k=3

所以等价无穷小为x^3

扩展资料:

洛必达的著作尚盛行于18世纪的圆锥曲线的研究。他最重要的著作是《阐明曲线的无穷小于分析》(1696),这本书是世界上第一本系统的微积分学教科书,他由一组定义和公理出发,全面地阐述变量、无穷小量、切线、微分等概念,这对传播新创建的微积分理论起了很大的作用。

在书中第九章记载著约翰‧伯努利在1694年7月22日告诉他的一个著名定理:「洛必达法则」,就是求一个分式当分子和分母都趋于零时的极限的法则。后人误以为是他的发明,故「洛必达法则」之名沿用至今。洛必达还写作过几何,代数及力学方面的文章。他亦计划写作一本关于积分学的教科书,但由于他过早去世,因此这本积分学教科书未能完成。而遗留的手稿于1720年巴黎出版,名为《圆锥曲线分析论》。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式