神经网络算法的局限性
神经网络算法的局限性是:可以使用均值函数但是这个函数将获取嵌入的平均值,并将其分配为新的嵌入。但是,很容易看出,对于某些不同的图,它们会给出相同的嵌入,所以,均值函数并不是单射的。
即使图不同,节点 v 和 v’ 的平均嵌入聚合(此处嵌入对应于不同的颜色)将给出相同的嵌入。
这里真正重要的是,你可以先用某个函数 f(x) 将每个嵌入映射到一个新的嵌入,然后进行求和,得到一个单射函数。在证明中,它们实际上显式地声明了这个函数 f,这需要两个额外条件,即 X 是可数的,且任何多重集都是有界的。
并且事实上,在训练中并没有任何东西可以保证这种单射性,而且可能还会有一些图是 GIN 无法区分的,但WL可以。所以这是对 GIN 的一个很强的假设,如果违反了这一假设,那么 GIN 的性能将受到限制。
神经网络算法的普适性是:
研究模型的局限性通常更容易获得对模型的洞察。毕竟,网络所不能学到的关于特定特征的知识在应用时独立于训练过程。
此外,通过帮助我们理解与模型相关的任务的难度,不可能性结果(impossibility result)有助于得出关于如何选择模型超参数的实用建议。
以图分类问题为例。训练一个图分类器需要识别是什么构成了一个类,即在同一个类而非其他类中找到图共享的属性,然后决定新的图是否遵守所学习到的属性。
然而,如果可以通过一定深度的图神经网络(且测试集足够多样化)证明上述决策问题是不可能的,那么我们可以确定,同一个网络将不会学习如何正确地对测试集进行分类,这与使用了什么学习算法无关。因此,在进行实验时,我们应该把重点放在比下限更深的网络上。