1个回答
展开全部
令x=π+u,则对u积分的区间化为[-π, π], dx = du.
I = ∫<0, 2π>(x-sinx)(1-cosx)^2dx
= ∫<-π, π>(π+u+sinu)(1+cosu)^2du
= 2π∫<0, π>(1+cosu)^2du = 2π∫<0, π>[1+2cosu+(cosu)^2]du
= π∫<0, π>[3+4cosu+cos2u]du
= π[3u+4sinu+(1/2)sin2u]<0, π> = 3π^2
I = ∫<0, 2π>(x-sinx)(1-cosx)^2dx
= ∫<-π, π>(π+u+sinu)(1+cosu)^2du
= 2π∫<0, π>(1+cosu)^2du = 2π∫<0, π>[1+2cosu+(cosu)^2]du
= π∫<0, π>[3+4cosu+cos2u]du
= π[3u+4sinu+(1/2)sin2u]<0, π> = 3π^2
本回答被提问者采纳
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询