如图所示,在等腰梯形ABCD中,对角线AC=BC+AD,求角DBC的度数
2个回答
展开全部
我来帮你回答吧!
分析:首先作辅助线:过点D作DE∥AC交BC的延长线于点E,根据等腰梯形的对角线相等,易得DE=AC=BC+AD,CE=AD,即可得DB=BE=DE,有等边三角形的角等于60°,即可求得.
解:过点D作DE∥AC交BC的延长线于点E,
∵四边形ABCD是等腰梯形,
∴AC=BD,
∵AD∥BC,
∴四边形ACED是平行四边形,
∴DE=AC=BC+AD,CE=AD,
∴BE=BC+CE=BC+AD,
∴DB=BE=DE,
∴∠DBC=60°.
解后反思:此题考查了等腰梯形的对角线相等、等边三角形的判定与性质等知识.解此题的关键是辅助线的作法:过上底作一腰的平行线.注意这是解梯形的题目中的常见辅助线.
答案不错吧!给你推荐一些学习资源吧!在百度视频搜“智能家教 学习方法与家庭教育新理念”,40分钟,介绍了学习所必须遵循的规律、家庭教育原则、学生在学习中和家长在家庭教育中的常见问题,介绍了智能家教如何遵循这些规律和原则对学生进行辅导,并如何实现在辅导中让学生收获最大化,讲得很透彻。赶快去看看吧!绝对不会让你后悔的哦!
分析:首先作辅助线:过点D作DE∥AC交BC的延长线于点E,根据等腰梯形的对角线相等,易得DE=AC=BC+AD,CE=AD,即可得DB=BE=DE,有等边三角形的角等于60°,即可求得.
解:过点D作DE∥AC交BC的延长线于点E,
∵四边形ABCD是等腰梯形,
∴AC=BD,
∵AD∥BC,
∴四边形ACED是平行四边形,
∴DE=AC=BC+AD,CE=AD,
∴BE=BC+CE=BC+AD,
∴DB=BE=DE,
∴∠DBC=60°.
解后反思:此题考查了等腰梯形的对角线相等、等边三角形的判定与性质等知识.解此题的关键是辅助线的作法:过上底作一腰的平行线.注意这是解梯形的题目中的常见辅助线.
答案不错吧!给你推荐一些学习资源吧!在百度视频搜“智能家教 学习方法与家庭教育新理念”,40分钟,介绍了学习所必须遵循的规律、家庭教育原则、学生在学习中和家长在家庭教育中的常见问题,介绍了智能家教如何遵循这些规律和原则对学生进行辅导,并如何实现在辅导中让学生收获最大化,讲得很透彻。赶快去看看吧!绝对不会让你后悔的哦!
创远信科
2024-07-24 广告
2024-07-24 广告
同轴线介电常数是指同轴电缆中介质对电场的响应能力,通常用ε_r表示,是介质相对于真空或空气的电容率。这一参数直接影响信号在电缆中的传播速度和效率。在选择同轴电缆时,需要考虑其介电常数,因为它与电缆的插入损耗、带宽和传输质量等性能密切相关。创...
点击进入详情页
本回答由创远信科提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询