设函数f(x)满足af(x)+bf(1/x)=c/x(其中a、b、c均为常数且a≠b),则f'(x)=

如题,求详细过程,谢谢a的绝对值≠b的绝对值,不小心少打了……... 如题,求详细过程,谢谢
a的绝对值≠b的绝对值,不小心少打了……
展开
dennis_zyp
推荐于2017-10-06 · TA获得超过11.5万个赞
知道顶级答主
回答量:4万
采纳率:90%
帮助的人:2亿
展开全部
af(x)+bf(1/x)=c/x ---> a^2f(x)+abf(1/x)=ac/x
以1/x代入:af(1/x)+bf(x)=cx ----> abf(1/x)+b^2f(1/x)=bcx
两式相关减:f(x)[(a^2-b^2]=ac/x-bcx
得f(x)=(ac/x-bcx)/(a^2-b^2)
因此有:f'(x)=(-ac/x^2-bc)/(a^2-b^2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式