直角三角形中斜边上的中线等于斜边的一半逆定理是什么?
展开全部
逆命题是斜边上的中线等于斜边一半的三角形是直角三角形。
设三角形ABC,AB边上的中线是AD,AD=(1/2)AB,求证:C=90
证明:因为AD=BD=CD=(1/2)AB,所以A=角ACD,角B=角BAD,又A+B+C=180度,所以2(角A+B)=180度,所以A+B=90度,故C=90度。
直角三角形的性质:
1、直角三角形两直角边的平方和等于斜边的平方。如图,∠BAC=90°,则AB²+AC²=BC²(勾股定理)
2、在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
3、直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。该性质称为直角三角形斜边中线定理。
4、直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
5、在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
展开全部
逆命题是斜边上的中线等于斜边一半的三角形是直角三角形。
设三角形ABC,AB边上的中线是AD,AD=(1/2)AB,求证:C=90
证明:因为AD=BD=CD=(1/2)AB,所以A=角ACD,角B=角BAD,又A+B+C=180度,所以2(角A+B)=180度,所以A+B=90度,故C=90度。
设三角形ABC,AB边上的中线是AD,AD=(1/2)AB,求证:C=90
证明:因为AD=BD=CD=(1/2)AB,所以A=角ACD,角B=角BAD,又A+B+C=180度,所以2(角A+B)=180度,所以A+B=90度,故C=90度。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
引用不是苦瓜是什么的回答:
逆命题是斜边上的中线等于斜边一半的三角形是直角三角形。
设三角形ABC,AB边上的中线是AD,AD=(1/2)AB,求证:C=90
证明:因为AD=BD=CD=(1/2)AB,所以A=角ACD,角B=角BAD,又A+B+C=180度,所以2(角A+B)=180度,所以A+B=90度,故C=90度。
直角三角形的性质:
1、直角三角形两直角边的平方和等于斜边的平方。如图,∠BAC=90°,则AB²+AC²=BC²(勾股定理)
2、在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
3、直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。该性质称为直角三角形斜边中线定理。
4、直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
5、在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
逆命题是斜边上的中线等于斜边一半的三角形是直角三角形。
设三角形ABC,AB边上的中线是AD,AD=(1/2)AB,求证:C=90
证明:因为AD=BD=CD=(1/2)AB,所以A=角ACD,角B=角BAD,又A+B+C=180度,所以2(角A+B)=180度,所以A+B=90度,故C=90度。
直角三角形的性质:
1、直角三角形两直角边的平方和等于斜边的平方。如图,∠BAC=90°,则AB²+AC²=BC²(勾股定理)
2、在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
3、直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。该性质称为直角三角形斜边中线定理。
4、直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
5、在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
展开全部
三角形一边上的中线等于这一边的一半,则这个三角形是真角三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询