数理统计如何证明最大似然估计不存在?

 我来答
帐号已注销
高粉答主

2021-11-13 · 说的都是干货,快来关注
知道小有建树答主
回答量:263
采纳率:95%
帮助的人:11.5万
展开全部

对的,求导(令之为零)得出的只是驻点,该驻点有可能是最小值点。为了保证求出驻点确实是最大值点,需要对刚才求出的d(L)(L表示似然函数)再求一次导数 , 只有一阶导数为零且二阶导数小于零的驻点,才是似然函数的最大值点 。

它以随机现象的观察试验取得资料作为出发点,以概率论为理论基础来研究随机现象,根据资料为随机现象选择数学模型,且利用数学资料来验证数学模型是否合适,在合适的基础上再研究它的特点,性质和规律性。

例如灯泡厂生产灯泡,将某天的产品中抽出几个进行试验,试验前不知道该天灯泡的寿命有多长,概率和其分布情况。

试验后得到这几个灯泡的寿命作为资料,从中推测整批生产灯泡的使用寿命、合格率等。为了研究它的分布,利用概率论提供的数学模型进行指数分布,求出值,再利用几天的抽样试验来确定指数分布的合适性。 

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式