函数的极限的有界性是什么?
1个回答
展开全部
是y=1/x,当x趋近于正无穷时,y逐渐变小后无限趋近于0,但却不会等于0,更不会小于0。
数列的有界性与函数的有界性,一个是非局部的,一个是局部的。主要原因是数列的数是有限的,可以完全列举出来,即数列收敛,即为有界。
函数的取值是无限的,所以对于函数极限来说只能是局部的,并不能扩大到整个函数的范围,因为极限本身就是一个穷举的概念,不能穷举完所有的取值,所以不能够扩大其范围。
定义
设函数f(x)的定义域为D,f(x)集合D上有定义。
如果存在数K1,使得 f(x)≤K1对任意x∈D都成立,则称函数f(x)在D上有上界。
反之,如果存在数字K2,使得 f(x)≥K2对任意x∈D都成立,则称函数f(x)在D上有下界,而K2称为函数f(x)在D上的一个下界。
如果存在正数M,使得 |f(x)|≤M 对任意x∈D都成立,则称函数在X上有界。如果这样的M不存在,就称函数f(x)在X上无界。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询