问一道高中数学题.急!急!急!需要详细过程!

已知命题p:方程ax^2+ax-2=0在-1到1上只有一个解;命题q:存在实数x使不等式x^2+2ax+2a<=0成立.若p^q为真命题,求a的取值范围... 已知命题p:方程ax^2+ax-2=0在-1到1上只有一个解;命题q:存在实数x使不等式x^2+2ax+2a<=0成立.若p^q为真命题,求a的取值范围 展开
给予的天空
2011-10-30 · TA获得超过2123个赞
知道小有建树答主
回答量:456
采纳率:50%
帮助的人:114万
展开全部
要使 命题p或q是假命题
则命题p和q都是假命题
命题p: 方程a^2x^2+ax-2=0在-1到1上有解
解有:a^2x^2+ax-2=0
(ax+2)(ax-1)=0
解得:x=-2/a 或 x=1/a
要满足在-1到1上有解则有要满足-2/a和1/a至少有一个值在-1到1之间
则有:解:①-1<=-2/a<=1 ,② -1<=1/a<=1(注:a为分母,所以不能为0)
① 解得:当a>0时,a>=2
当a <0时,a<=-2
② 解得:当a>0时,a>=1
当a <0时,a<=-1
综上所述:a的范围是(-∞,-1】∪【1,+ ∞)
即在上述范围内命题p是真命题,
反之,要满足题意使之为假命题,a的取值范围为1<a<1
命题q:只有一个实数x满足不等式x^2+2ax+2a<=0
解有:x^2+2ax+2a<=0
x^2+2ax+a^2-a^2+2a<=0
(x+a) ^2-(a^2-2a+1)+1<=0
(x+a) ^2<=(a-1) ^2-1
因为任何数的平方一定大于等于0,所以(x+a) ^2一定是大于等于0的
要使其x的值只有一个,则有(x+a) ^2=0满足题意,
可知:当(a-1) ^2-1=0时,命题q为真命题,解得:a=0或a=2
即,要使命题q为假命题,a满足不为0和2,
综合可得:1<a<1且a≠0
15
| 评论

向TA求助
回答者: 幻紫枫舞 | 二级
8023句句
2011-10-30 · 超过10用户采纳过TA的回答
知道答主
回答量:56
采纳率:0%
帮助的人:36万
展开全部
要使 命题p或q是假命题
则命题p和q都是假命题
命题p: 方程a^2x^2+ax-2=0在-1到1上有解
解有:a^2x^2+ax-2=0
(ax+2)(ax-1)=0
解得:x=-2/a 或 x=1/a
要满足在-1到1上有解则有要满足-2/a和1/a至少有一个值在-1到1之间
则有:解:①-1<=-2/a<=1 ,② -1<=1/a<=1(注:a为分母,所以不能为0)
① 解得:当a>0时,a>=2
当a <0时,a<=-2
② 解得:当a>0时,a>=1
当a <0时,a<=-1
综上所述:a的范围是(-∞,-1】∪【1,+ ∞)
即在上述范围内命题p是真命题,
反之,要满足题意使之为假命题,a的取值范围为1<a<1
命题q:只有一个实数x满足不等式x^2+2ax+2a<=0
解有:x^2+2ax+2a<=0
x^2+2ax+a^2-a^2+2a<=0
(x+a) ^2-(a^2-2a+1)+1<=0
(x+a) ^2<=(a-1) ^2-1
因为任何数的平方一定大于等于0,所以(x+a) ^2一定是大于等于0的
要使其x的值只有一个,则有(x+a) ^2=0满足题意,
可知:当(a-1) ^2-1=0时,命题q为真命题,解得:a=0或a=2
即,要使命题q为假命题,a满足不为0和2,
综合可得:1<a<1且a≠0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式